This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the set of words over a set. (Contributed by Stefan O'Rear, 10-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrdval | ⊢ ( 𝑆 ∈ 𝑉 → Word 𝑆 = ∪ 𝑙 ∈ ℕ0 ( 𝑆 ↑m ( 0 ..^ 𝑙 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-word | ⊢ Word 𝑆 = { 𝑤 ∣ ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 } | |
| 2 | eliun | ⊢ ( 𝑤 ∈ ∪ 𝑙 ∈ ℕ0 ( 𝑆 ↑m ( 0 ..^ 𝑙 ) ) ↔ ∃ 𝑙 ∈ ℕ0 𝑤 ∈ ( 𝑆 ↑m ( 0 ..^ 𝑙 ) ) ) | |
| 3 | ovex | ⊢ ( 0 ..^ 𝑙 ) ∈ V | |
| 4 | elmapg | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 0 ..^ 𝑙 ) ∈ V ) → ( 𝑤 ∈ ( 𝑆 ↑m ( 0 ..^ 𝑙 ) ) ↔ 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) ) | |
| 5 | 3 4 | mpan2 | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝑤 ∈ ( 𝑆 ↑m ( 0 ..^ 𝑙 ) ) ↔ 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) ) |
| 6 | 5 | rexbidv | ⊢ ( 𝑆 ∈ 𝑉 → ( ∃ 𝑙 ∈ ℕ0 𝑤 ∈ ( 𝑆 ↑m ( 0 ..^ 𝑙 ) ) ↔ ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) ) |
| 7 | 2 6 | bitrid | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝑤 ∈ ∪ 𝑙 ∈ ℕ0 ( 𝑆 ↑m ( 0 ..^ 𝑙 ) ) ↔ ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) ) |
| 8 | 7 | eqabdv | ⊢ ( 𝑆 ∈ 𝑉 → ∪ 𝑙 ∈ ℕ0 ( 𝑆 ↑m ( 0 ..^ 𝑙 ) ) = { 𝑤 ∣ ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 } ) |
| 9 | 1 8 | eqtr4id | ⊢ ( 𝑆 ∈ 𝑉 → Word 𝑆 = ∪ 𝑙 ∈ ℕ0 ( 𝑆 ↑m ( 0 ..^ 𝑙 ) ) ) |