This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isup and other theorems. (Contributed by Zhi Wang, 25-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upfval.b | ||
| upfval.c | |||
| upfval.h | |||
| upfval.j | |||
| upfval.o | |||
| upfval2.w | |||
| upfval3.f | |||
| Assertion | isuplem | Could not format assertion : No typesetting found for |- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> ( ( X e. B /\ M e. ( W J ( F ` X ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) ) with typecode |- |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upfval.b | ||
| 2 | upfval.c | ||
| 3 | upfval.h | ||
| 4 | upfval.j | ||
| 5 | upfval.o | ||
| 6 | upfval2.w | ||
| 7 | upfval3.f | ||
| 8 | 1 2 3 4 5 6 7 | upfval3 | Could not format ( ph -> ( <. F , G >. ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( F ` x ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) } ) : No typesetting found for |- ( ph -> ( <. F , G >. ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( F ` x ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) } ) with typecode |- |
| 9 | oveq1 | ||
| 10 | fveq2 | ||
| 11 | 10 | opeq2d | |
| 12 | 11 | oveq1d | |
| 13 | oveq1 | ||
| 14 | 13 | fveq1d | |
| 15 | eqidd | ||
| 16 | 12 14 15 | oveq123d | |
| 17 | 16 | eqeq2d | |
| 18 | 9 17 | reueqbidv | |
| 19 | 18 | 2ralbidv | |
| 20 | oveq2 | ||
| 21 | 20 | eqeq2d | |
| 22 | 21 | reubidv | |
| 23 | 22 | 2ralbidv | |
| 24 | eqidd | ||
| 25 | simpl | ||
| 26 | 25 | fveq2d | |
| 27 | 26 | oveq2d | |
| 28 | 8 19 23 24 27 | brab2ddw | Could not format ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> ( ( X e. B /\ M e. ( W J ( F ` X ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) ) : No typesetting found for |- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> ( ( X e. B /\ M e. ( W J ( F ` X ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) ) with typecode |- |