This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum from 0 to infinity in terms of sum from 1 to infinity. (Contributed by NM, 2-Jan-2006) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumnn0nn.1 | ⊢ ( 𝑘 = 0 → 𝐴 = 𝐵 ) | |
| isumnn0nn.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | ||
| isumnn0nn.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) | ||
| isumnn0nn.4 | ⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) | ||
| Assertion | isumnn0nn | ⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ0 𝐴 = ( 𝐵 + Σ 𝑘 ∈ ℕ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumnn0nn.1 | ⊢ ( 𝑘 = 0 → 𝐴 = 𝐵 ) | |
| 2 | isumnn0nn.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
| 3 | isumnn0nn.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) | |
| 4 | isumnn0nn.4 | ⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 5 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 6 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 7 | 5 6 2 3 4 | isum1p | ⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ0 𝐴 = ( ( 𝐹 ‘ 0 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) 𝐴 ) ) |
| 8 | fveq2 | ⊢ ( 𝑘 = 0 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 0 ) ) | |
| 9 | 8 1 | eqeq12d | ⊢ ( 𝑘 = 0 → ( ( 𝐹 ‘ 𝑘 ) = 𝐴 ↔ ( 𝐹 ‘ 0 ) = 𝐵 ) ) |
| 10 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
| 11 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 12 | 11 | a1i | ⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 13 | 9 10 12 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 𝐵 ) |
| 14 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 15 | 14 | fveq2i | ⊢ ( ℤ≥ ‘ ( 0 + 1 ) ) = ( ℤ≥ ‘ 1 ) |
| 16 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 17 | 15 16 | eqtr4i | ⊢ ( ℤ≥ ‘ ( 0 + 1 ) ) = ℕ |
| 18 | 17 | sumeq1i | ⊢ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) 𝐴 = Σ 𝑘 ∈ ℕ 𝐴 |
| 19 | 18 | a1i | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) 𝐴 = Σ 𝑘 ∈ ℕ 𝐴 ) |
| 20 | 13 19 | oveq12d | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 0 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) 𝐴 ) = ( 𝐵 + Σ 𝑘 ∈ ℕ 𝐴 ) ) |
| 21 | 7 20 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ0 𝐴 = ( 𝐵 + Σ 𝑘 ∈ ℕ 𝐴 ) ) |