This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum from 0 to infinity in terms of sum from 1 to infinity. (Contributed by NM, 2-Jan-2006) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumnn0nn.1 | ||
| isumnn0nn.2 | |||
| isumnn0nn.3 | |||
| isumnn0nn.4 | |||
| Assertion | isumnn0nn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumnn0nn.1 | ||
| 2 | isumnn0nn.2 | ||
| 3 | isumnn0nn.3 | ||
| 4 | isumnn0nn.4 | ||
| 5 | nn0uz | ||
| 6 | 0zd | ||
| 7 | 5 6 2 3 4 | isum1p | |
| 8 | fveq2 | ||
| 9 | 8 1 | eqeq12d | |
| 10 | 2 | ralrimiva | |
| 11 | 0nn0 | ||
| 12 | 11 | a1i | |
| 13 | 9 10 12 | rspcdva | |
| 14 | 0p1e1 | ||
| 15 | 14 | fveq2i | |
| 16 | nnuz | ||
| 17 | 15 16 | eqtr4i | |
| 18 | 17 | sumeq1i | |
| 19 | 18 | a1i | |
| 20 | 13 19 | oveq12d | |
| 21 | 7 20 | eqtrd |