This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being an ultrafilter. (Contributed by Jeff Hankins, 30-Nov-2009) (Revised by Mario Carneiro, 29-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isufil | |- ( F e. ( UFil ` X ) <-> ( F e. ( Fil ` X ) /\ A. x e. ~P X ( x e. F \/ ( X \ x ) e. F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ufil | |- UFil = ( y e. _V |-> { z e. ( Fil ` y ) | A. x e. ~P y ( x e. z \/ ( y \ x ) e. z ) } ) |
|
| 2 | pweq | |- ( y = X -> ~P y = ~P X ) |
|
| 3 | 2 | adantr | |- ( ( y = X /\ z = F ) -> ~P y = ~P X ) |
| 4 | eleq2 | |- ( z = F -> ( x e. z <-> x e. F ) ) |
|
| 5 | 4 | adantl | |- ( ( y = X /\ z = F ) -> ( x e. z <-> x e. F ) ) |
| 6 | difeq1 | |- ( y = X -> ( y \ x ) = ( X \ x ) ) |
|
| 7 | eleq12 | |- ( ( ( y \ x ) = ( X \ x ) /\ z = F ) -> ( ( y \ x ) e. z <-> ( X \ x ) e. F ) ) |
|
| 8 | 6 7 | sylan | |- ( ( y = X /\ z = F ) -> ( ( y \ x ) e. z <-> ( X \ x ) e. F ) ) |
| 9 | 5 8 | orbi12d | |- ( ( y = X /\ z = F ) -> ( ( x e. z \/ ( y \ x ) e. z ) <-> ( x e. F \/ ( X \ x ) e. F ) ) ) |
| 10 | 3 9 | raleqbidv | |- ( ( y = X /\ z = F ) -> ( A. x e. ~P y ( x e. z \/ ( y \ x ) e. z ) <-> A. x e. ~P X ( x e. F \/ ( X \ x ) e. F ) ) ) |
| 11 | fveq2 | |- ( y = X -> ( Fil ` y ) = ( Fil ` X ) ) |
|
| 12 | fvex | |- ( Fil ` y ) e. _V |
|
| 13 | elfvdm | |- ( F e. ( Fil ` X ) -> X e. dom Fil ) |
|
| 14 | 1 10 11 12 13 | elmptrab2 | |- ( F e. ( UFil ` X ) <-> ( F e. ( Fil ` X ) /\ A. x e. ~P X ( x e. F \/ ( X \ x ) e. F ) ) ) |