This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of ultrafilters on a set. An ultrafilter is a filter that gives a definite result for every subset. (Contributed by Jeff Hankins, 30-Nov-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ufil | ⊢ UFil = ( 𝑔 ∈ V ↦ { 𝑓 ∈ ( Fil ‘ 𝑔 ) ∣ ∀ 𝑥 ∈ 𝒫 𝑔 ( 𝑥 ∈ 𝑓 ∨ ( 𝑔 ∖ 𝑥 ) ∈ 𝑓 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cufil | ⊢ UFil | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | cvv | ⊢ V | |
| 3 | vf | ⊢ 𝑓 | |
| 4 | cfil | ⊢ Fil | |
| 5 | 1 | cv | ⊢ 𝑔 |
| 6 | 5 4 | cfv | ⊢ ( Fil ‘ 𝑔 ) |
| 7 | vx | ⊢ 𝑥 | |
| 8 | 5 | cpw | ⊢ 𝒫 𝑔 |
| 9 | 7 | cv | ⊢ 𝑥 |
| 10 | 3 | cv | ⊢ 𝑓 |
| 11 | 9 10 | wcel | ⊢ 𝑥 ∈ 𝑓 |
| 12 | 5 9 | cdif | ⊢ ( 𝑔 ∖ 𝑥 ) |
| 13 | 12 10 | wcel | ⊢ ( 𝑔 ∖ 𝑥 ) ∈ 𝑓 |
| 14 | 11 13 | wo | ⊢ ( 𝑥 ∈ 𝑓 ∨ ( 𝑔 ∖ 𝑥 ) ∈ 𝑓 ) |
| 15 | 14 7 8 | wral | ⊢ ∀ 𝑥 ∈ 𝒫 𝑔 ( 𝑥 ∈ 𝑓 ∨ ( 𝑔 ∖ 𝑥 ) ∈ 𝑓 ) |
| 16 | 15 3 6 | crab | ⊢ { 𝑓 ∈ ( Fil ‘ 𝑔 ) ∣ ∀ 𝑥 ∈ 𝒫 𝑔 ( 𝑥 ∈ 𝑓 ∨ ( 𝑔 ∖ 𝑥 ) ∈ 𝑓 ) } |
| 17 | 1 2 16 | cmpt | ⊢ ( 𝑔 ∈ V ↦ { 𝑓 ∈ ( Fil ‘ 𝑔 ) ∣ ∀ 𝑥 ∈ 𝒫 𝑔 ( 𝑥 ∈ 𝑓 ∨ ( 𝑔 ∖ 𝑥 ) ∈ 𝑓 ) } ) |
| 18 | 0 17 | wceq | ⊢ UFil = ( 𝑔 ∈ V ↦ { 𝑓 ∈ ( Fil ‘ 𝑔 ) ∣ ∀ 𝑥 ∈ 𝒫 𝑔 ( 𝑥 ∈ 𝑓 ∨ ( 𝑔 ∖ 𝑥 ) ∈ 𝑓 ) } ) |