This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a topological left module, which is just what its name suggests: instead of a group over a ring with a scalar product connecting them, it is a topological group over a topological ring with a continuous scalar product. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-tlm | ⊢ TopMod = { 𝑤 ∈ ( TopMnd ∩ LMod ) ∣ ( ( Scalar ‘ 𝑤 ) ∈ TopRing ∧ ( ·sf ‘ 𝑤 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) Cn ( TopOpen ‘ 𝑤 ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctlm | ⊢ TopMod | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | ctmd | ⊢ TopMnd | |
| 3 | clmod | ⊢ LMod | |
| 4 | 2 3 | cin | ⊢ ( TopMnd ∩ LMod ) |
| 5 | csca | ⊢ Scalar | |
| 6 | 1 | cv | ⊢ 𝑤 |
| 7 | 6 5 | cfv | ⊢ ( Scalar ‘ 𝑤 ) |
| 8 | ctrg | ⊢ TopRing | |
| 9 | 7 8 | wcel | ⊢ ( Scalar ‘ 𝑤 ) ∈ TopRing |
| 10 | cscaf | ⊢ ·sf | |
| 11 | 6 10 | cfv | ⊢ ( ·sf ‘ 𝑤 ) |
| 12 | ctopn | ⊢ TopOpen | |
| 13 | 7 12 | cfv | ⊢ ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) |
| 14 | ctx | ⊢ ×t | |
| 15 | 6 12 | cfv | ⊢ ( TopOpen ‘ 𝑤 ) |
| 16 | 13 15 14 | co | ⊢ ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) |
| 17 | ccn | ⊢ Cn | |
| 18 | 16 15 17 | co | ⊢ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) Cn ( TopOpen ‘ 𝑤 ) ) |
| 19 | 11 18 | wcel | ⊢ ( ·sf ‘ 𝑤 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) Cn ( TopOpen ‘ 𝑤 ) ) |
| 20 | 9 19 | wa | ⊢ ( ( Scalar ‘ 𝑤 ) ∈ TopRing ∧ ( ·sf ‘ 𝑤 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) Cn ( TopOpen ‘ 𝑤 ) ) ) |
| 21 | 20 1 4 | crab | ⊢ { 𝑤 ∈ ( TopMnd ∩ LMod ) ∣ ( ( Scalar ‘ 𝑤 ) ∈ TopRing ∧ ( ·sf ‘ 𝑤 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) Cn ( TopOpen ‘ 𝑤 ) ) ) } |
| 22 | 0 21 | wceq | ⊢ TopMod = { 𝑤 ∈ ( TopMnd ∩ LMod ) ∣ ( ( Scalar ‘ 𝑤 ) ∈ TopRing ∧ ( ·sf ‘ 𝑤 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) Cn ( TopOpen ‘ 𝑤 ) ) ) } |