This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unit group of a topological division ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | istrg.1 | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| istdrg.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| Assertion | tdrgunit | ⊢ ( 𝑅 ∈ TopDRing → ( 𝑀 ↾s 𝑈 ) ∈ TopGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istrg.1 | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| 2 | istdrg.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | 1 2 | istdrg | ⊢ ( 𝑅 ∈ TopDRing ↔ ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ( 𝑀 ↾s 𝑈 ) ∈ TopGrp ) ) |
| 4 | 3 | simp3bi | ⊢ ( 𝑅 ∈ TopDRing → ( 𝑀 ↾s 𝑈 ) ∈ TopGrp ) |