This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subring of non-unital ring predicate. (Contributed by AV, 14-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | issubrng.b | |- B = ( Base ` R ) |
|
| Assertion | issubrng | |- ( A e. ( SubRng ` R ) <-> ( R e. Rng /\ ( R |`s A ) e. Rng /\ A C_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubrng.b | |- B = ( Base ` R ) |
|
| 2 | df-subrng | |- SubRng = ( w e. Rng |-> { s e. ~P ( Base ` w ) | ( w |`s s ) e. Rng } ) |
|
| 3 | 2 | mptrcl | |- ( A e. ( SubRng ` R ) -> R e. Rng ) |
| 4 | simp1 | |- ( ( R e. Rng /\ ( R |`s A ) e. Rng /\ A C_ B ) -> R e. Rng ) |
|
| 5 | fveq2 | |- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
|
| 6 | 5 | pweqd | |- ( r = R -> ~P ( Base ` r ) = ~P ( Base ` R ) ) |
| 7 | oveq1 | |- ( r = R -> ( r |`s s ) = ( R |`s s ) ) |
|
| 8 | 7 | eleq1d | |- ( r = R -> ( ( r |`s s ) e. Rng <-> ( R |`s s ) e. Rng ) ) |
| 9 | 6 8 | rabeqbidv | |- ( r = R -> { s e. ~P ( Base ` r ) | ( r |`s s ) e. Rng } = { s e. ~P ( Base ` R ) | ( R |`s s ) e. Rng } ) |
| 10 | df-subrng | |- SubRng = ( r e. Rng |-> { s e. ~P ( Base ` r ) | ( r |`s s ) e. Rng } ) |
|
| 11 | fvex | |- ( Base ` R ) e. _V |
|
| 12 | 11 | pwex | |- ~P ( Base ` R ) e. _V |
| 13 | 12 | rabex | |- { s e. ~P ( Base ` R ) | ( R |`s s ) e. Rng } e. _V |
| 14 | 9 10 13 | fvmpt | |- ( R e. Rng -> ( SubRng ` R ) = { s e. ~P ( Base ` R ) | ( R |`s s ) e. Rng } ) |
| 15 | 14 | eleq2d | |- ( R e. Rng -> ( A e. ( SubRng ` R ) <-> A e. { s e. ~P ( Base ` R ) | ( R |`s s ) e. Rng } ) ) |
| 16 | oveq2 | |- ( s = A -> ( R |`s s ) = ( R |`s A ) ) |
|
| 17 | 16 | eleq1d | |- ( s = A -> ( ( R |`s s ) e. Rng <-> ( R |`s A ) e. Rng ) ) |
| 18 | 17 | elrab | |- ( A e. { s e. ~P ( Base ` R ) | ( R |`s s ) e. Rng } <-> ( A e. ~P ( Base ` R ) /\ ( R |`s A ) e. Rng ) ) |
| 19 | 1 | eqcomi | |- ( Base ` R ) = B |
| 20 | 19 | sseq2i | |- ( A C_ ( Base ` R ) <-> A C_ B ) |
| 21 | 20 | anbi2i | |- ( ( ( R |`s A ) e. Rng /\ A C_ ( Base ` R ) ) <-> ( ( R |`s A ) e. Rng /\ A C_ B ) ) |
| 22 | ibar | |- ( R e. Rng -> ( ( ( R |`s A ) e. Rng /\ A C_ B ) <-> ( R e. Rng /\ ( ( R |`s A ) e. Rng /\ A C_ B ) ) ) ) |
|
| 23 | 21 22 | bitrid | |- ( R e. Rng -> ( ( ( R |`s A ) e. Rng /\ A C_ ( Base ` R ) ) <-> ( R e. Rng /\ ( ( R |`s A ) e. Rng /\ A C_ B ) ) ) ) |
| 24 | 11 | elpw2 | |- ( A e. ~P ( Base ` R ) <-> A C_ ( Base ` R ) ) |
| 25 | 24 | anbi2ci | |- ( ( A e. ~P ( Base ` R ) /\ ( R |`s A ) e. Rng ) <-> ( ( R |`s A ) e. Rng /\ A C_ ( Base ` R ) ) ) |
| 26 | 3anass | |- ( ( R e. Rng /\ ( R |`s A ) e. Rng /\ A C_ B ) <-> ( R e. Rng /\ ( ( R |`s A ) e. Rng /\ A C_ B ) ) ) |
|
| 27 | 23 25 26 | 3bitr4g | |- ( R e. Rng -> ( ( A e. ~P ( Base ` R ) /\ ( R |`s A ) e. Rng ) <-> ( R e. Rng /\ ( R |`s A ) e. Rng /\ A C_ B ) ) ) |
| 28 | 18 27 | bitrid | |- ( R e. Rng -> ( A e. { s e. ~P ( Base ` R ) | ( R |`s s ) e. Rng } <-> ( R e. Rng /\ ( R |`s A ) e. Rng /\ A C_ B ) ) ) |
| 29 | 15 28 | bitrd | |- ( R e. Rng -> ( A e. ( SubRng ` R ) <-> ( R e. Rng /\ ( R |`s A ) e. Rng /\ A C_ B ) ) ) |
| 30 | 3 4 29 | pm5.21nii | |- ( A e. ( SubRng ` R ) <-> ( R e. Rng /\ ( R |`s A ) e. Rng /\ A C_ B ) ) |