This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce a magma from its properties. (Contributed by AV, 25-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismgmd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) | |
| ismgmd.0 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | ||
| ismgmd.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) | ||
| ismgmd.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) | ||
| Assertion | ismgmd | ⊢ ( 𝜑 → 𝐺 ∈ Mgm ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismgmd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) | |
| 2 | ismgmd.0 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | |
| 3 | ismgmd.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) | |
| 4 | ismgmd.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) | |
| 5 | 4 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 6 | 5 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 7 | 3 | oveqd | ⊢ ( 𝜑 → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 8 | 7 1 | eleq12d | ⊢ ( 𝜑 → ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ↔ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) ) |
| 9 | 1 8 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) ∈ 𝐵 ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) ) |
| 10 | 1 9 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) ∈ 𝐵 ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) ) |
| 11 | 6 10 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 12 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 13 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 14 | 12 13 | ismgm | ⊢ ( 𝐺 ∈ 𝑉 → ( 𝐺 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) ) |
| 15 | 2 14 | syl | ⊢ ( 𝜑 → ( 𝐺 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) ) |
| 16 | 11 15 | mpbird | ⊢ ( 𝜑 → 𝐺 ∈ Mgm ) |