This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubgrpd.s | ||
| issubgrpd.z | |||
| issubgrpd.p | |||
| issubgrpd.ss | |||
| issubgrpd.zcl | |||
| issubgrpd.acl | |||
| issubgrpd.ncl | |||
| issubgrpd.g | |||
| Assertion | issubgrpd2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubgrpd.s | ||
| 2 | issubgrpd.z | ||
| 3 | issubgrpd.p | ||
| 4 | issubgrpd.ss | ||
| 5 | issubgrpd.zcl | ||
| 6 | issubgrpd.acl | ||
| 7 | issubgrpd.ncl | ||
| 8 | issubgrpd.g | ||
| 9 | 5 | ne0d | |
| 10 | 3 | oveqd | |
| 11 | 10 | ad2antrr | |
| 12 | 6 | 3expa | |
| 13 | 11 12 | eqeltrrd | |
| 14 | 13 | ralrimiva | |
| 15 | 14 7 | jca | |
| 16 | 15 | ralrimiva | |
| 17 | eqid | ||
| 18 | eqid | ||
| 19 | eqid | ||
| 20 | 17 18 19 | issubg2 | |
| 21 | 8 20 | syl | |
| 22 | 4 9 16 21 | mpbir3and |