This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of a set to be a subgraph of a set whose edge function is actually a function. (Contributed by AV, 20-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝑆 ) | |
| issubgr.a | ⊢ 𝐴 = ( Vtx ‘ 𝐺 ) | ||
| issubgr.i | ⊢ 𝐼 = ( iEdg ‘ 𝑆 ) | ||
| issubgr.b | ⊢ 𝐵 = ( iEdg ‘ 𝐺 ) | ||
| issubgr.e | ⊢ 𝐸 = ( Edg ‘ 𝑆 ) | ||
| Assertion | issubgr2 | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈 ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝑆 ) | |
| 2 | issubgr.a | ⊢ 𝐴 = ( Vtx ‘ 𝐺 ) | |
| 3 | issubgr.i | ⊢ 𝐼 = ( iEdg ‘ 𝑆 ) | |
| 4 | issubgr.b | ⊢ 𝐵 = ( iEdg ‘ 𝐺 ) | |
| 5 | issubgr.e | ⊢ 𝐸 = ( Edg ‘ 𝑆 ) | |
| 6 | 1 2 3 4 5 | issubgr | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) ) |
| 7 | 6 | 3adant2 | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈 ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) ) |
| 8 | resss | ⊢ ( 𝐵 ↾ dom 𝐼 ) ⊆ 𝐵 | |
| 9 | sseq1 | ⊢ ( 𝐼 = ( 𝐵 ↾ dom 𝐼 ) → ( 𝐼 ⊆ 𝐵 ↔ ( 𝐵 ↾ dom 𝐼 ) ⊆ 𝐵 ) ) | |
| 10 | 8 9 | mpbiri | ⊢ ( 𝐼 = ( 𝐵 ↾ dom 𝐼 ) → 𝐼 ⊆ 𝐵 ) |
| 11 | funssres | ⊢ ( ( Fun 𝐵 ∧ 𝐼 ⊆ 𝐵 ) → ( 𝐵 ↾ dom 𝐼 ) = 𝐼 ) | |
| 12 | 11 | eqcomd | ⊢ ( ( Fun 𝐵 ∧ 𝐼 ⊆ 𝐵 ) → 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ) |
| 13 | 12 | ex | ⊢ ( Fun 𝐵 → ( 𝐼 ⊆ 𝐵 → 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ) ) |
| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈 ) → ( 𝐼 ⊆ 𝐵 → 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ) ) |
| 15 | 10 14 | impbid2 | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈 ) → ( 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ↔ 𝐼 ⊆ 𝐵 ) ) |
| 16 | 15 | 3anbi2d | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈 ) → ( ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) ) |
| 17 | 7 16 | bitrd | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈 ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) ) |