This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The properties of a subgraph. (Contributed by AV, 19-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝑆 ) | |
| issubgr.a | ⊢ 𝐴 = ( Vtx ‘ 𝐺 ) | ||
| issubgr.i | ⊢ 𝐼 = ( iEdg ‘ 𝑆 ) | ||
| issubgr.b | ⊢ 𝐵 = ( iEdg ‘ 𝐺 ) | ||
| issubgr.e | ⊢ 𝐸 = ( Edg ‘ 𝑆 ) | ||
| Assertion | subgrprop | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝑆 ) | |
| 2 | issubgr.a | ⊢ 𝐴 = ( Vtx ‘ 𝐺 ) | |
| 3 | issubgr.i | ⊢ 𝐼 = ( iEdg ‘ 𝑆 ) | |
| 4 | issubgr.b | ⊢ 𝐵 = ( iEdg ‘ 𝐺 ) | |
| 5 | issubgr.e | ⊢ 𝐸 = ( Edg ‘ 𝑆 ) | |
| 6 | subgrv | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) ) | |
| 7 | 1 2 3 4 5 | issubgr | ⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) ) |
| 8 | 7 | biimpd | ⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑆 SubGraph 𝐺 → ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) ) |
| 9 | 8 | ancoms | ⊢ ( ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) → ( 𝑆 SubGraph 𝐺 → ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) ) |
| 10 | 6 9 | mpcom | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) |