This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of a set to be a subgraph of a set whose edge function is actually a function. (Contributed by AV, 20-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubgr.v | |- V = ( Vtx ` S ) |
|
| issubgr.a | |- A = ( Vtx ` G ) |
||
| issubgr.i | |- I = ( iEdg ` S ) |
||
| issubgr.b | |- B = ( iEdg ` G ) |
||
| issubgr.e | |- E = ( Edg ` S ) |
||
| Assertion | issubgr2 | |- ( ( G e. W /\ Fun B /\ S e. U ) -> ( S SubGraph G <-> ( V C_ A /\ I C_ B /\ E C_ ~P V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubgr.v | |- V = ( Vtx ` S ) |
|
| 2 | issubgr.a | |- A = ( Vtx ` G ) |
|
| 3 | issubgr.i | |- I = ( iEdg ` S ) |
|
| 4 | issubgr.b | |- B = ( iEdg ` G ) |
|
| 5 | issubgr.e | |- E = ( Edg ` S ) |
|
| 6 | 1 2 3 4 5 | issubgr | |- ( ( G e. W /\ S e. U ) -> ( S SubGraph G <-> ( V C_ A /\ I = ( B |` dom I ) /\ E C_ ~P V ) ) ) |
| 7 | 6 | 3adant2 | |- ( ( G e. W /\ Fun B /\ S e. U ) -> ( S SubGraph G <-> ( V C_ A /\ I = ( B |` dom I ) /\ E C_ ~P V ) ) ) |
| 8 | resss | |- ( B |` dom I ) C_ B |
|
| 9 | sseq1 | |- ( I = ( B |` dom I ) -> ( I C_ B <-> ( B |` dom I ) C_ B ) ) |
|
| 10 | 8 9 | mpbiri | |- ( I = ( B |` dom I ) -> I C_ B ) |
| 11 | funssres | |- ( ( Fun B /\ I C_ B ) -> ( B |` dom I ) = I ) |
|
| 12 | 11 | eqcomd | |- ( ( Fun B /\ I C_ B ) -> I = ( B |` dom I ) ) |
| 13 | 12 | ex | |- ( Fun B -> ( I C_ B -> I = ( B |` dom I ) ) ) |
| 14 | 13 | 3ad2ant2 | |- ( ( G e. W /\ Fun B /\ S e. U ) -> ( I C_ B -> I = ( B |` dom I ) ) ) |
| 15 | 10 14 | impbid2 | |- ( ( G e. W /\ Fun B /\ S e. U ) -> ( I = ( B |` dom I ) <-> I C_ B ) ) |
| 16 | 15 | 3anbi2d | |- ( ( G e. W /\ Fun B /\ S e. U ) -> ( ( V C_ A /\ I = ( B |` dom I ) /\ E C_ ~P V ) <-> ( V C_ A /\ I C_ B /\ E C_ ~P V ) ) ) |
| 17 | 7 16 | bitrd | |- ( ( G e. W /\ Fun B /\ S e. U ) -> ( S SubGraph G <-> ( V C_ A /\ I C_ B /\ E C_ ~P V ) ) ) |