This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sufficient condition for a (nonempty) set to be a singleton. (Contributed by AV, 20-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | issn | |- ( E. x e. A A. y e. A x = y -> E. z A = { z } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcom | |- ( x = y <-> y = x ) |
|
| 2 | 1 | a1i | |- ( x e. A -> ( x = y <-> y = x ) ) |
| 3 | 2 | ralbidv | |- ( x e. A -> ( A. y e. A x = y <-> A. y e. A y = x ) ) |
| 4 | ne0i | |- ( x e. A -> A =/= (/) ) |
|
| 5 | eqsn | |- ( A =/= (/) -> ( A = { x } <-> A. y e. A y = x ) ) |
|
| 6 | 4 5 | syl | |- ( x e. A -> ( A = { x } <-> A. y e. A y = x ) ) |
| 7 | 3 6 | bitr4d | |- ( x e. A -> ( A. y e. A x = y <-> A = { x } ) ) |
| 8 | sneq | |- ( z = x -> { z } = { x } ) |
|
| 9 | 8 | eqeq2d | |- ( z = x -> ( A = { z } <-> A = { x } ) ) |
| 10 | 9 | spcegv | |- ( x e. A -> ( A = { x } -> E. z A = { z } ) ) |
| 11 | 7 10 | sylbid | |- ( x e. A -> ( A. y e. A x = y -> E. z A = { z } ) ) |
| 12 | 11 | rexlimiv | |- ( E. x e. A A. y e. A x = y -> E. z A = { z } ) |