This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sufficient condition for a (nonempty) set to be a singleton. (Contributed by AV, 20-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | issn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcom | ||
| 2 | 1 | a1i | |
| 3 | 2 | ralbidv | |
| 4 | ne0i | ||
| 5 | eqsn | ||
| 6 | 4 5 | syl | |
| 7 | 3 6 | bitr4d | |
| 8 | sneq | ||
| 9 | 8 | eqeq2d | |
| 10 | 9 | spcegv | |
| 11 | 7 10 | sylbid | |
| 12 | 11 | rexlimiv |