This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binary relation of a function value which is an ordered-pair class abstraction of a restricted binary relation is the restricted binary relation. The first hypothesis can often be obtained by using fvmptopab . (Contributed by AV, 29-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brfvopabrbr.1 | ⊢ ( 𝐴 ‘ 𝑍 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐵 ‘ 𝑍 ) 𝑦 ∧ 𝜑 ) } | |
| brfvopabrbr.2 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
| brfvopabrbr.3 | ⊢ Rel ( 𝐵 ‘ 𝑍 ) | ||
| Assertion | brfvopabrbr | ⊢ ( 𝑋 ( 𝐴 ‘ 𝑍 ) 𝑌 ↔ ( 𝑋 ( 𝐵 ‘ 𝑍 ) 𝑌 ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brfvopabrbr.1 | ⊢ ( 𝐴 ‘ 𝑍 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐵 ‘ 𝑍 ) 𝑦 ∧ 𝜑 ) } | |
| 2 | brfvopabrbr.2 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | brfvopabrbr.3 | ⊢ Rel ( 𝐵 ‘ 𝑍 ) | |
| 4 | brne0 | ⊢ ( 𝑋 ( 𝐴 ‘ 𝑍 ) 𝑌 → ( 𝐴 ‘ 𝑍 ) ≠ ∅ ) | |
| 5 | fvprc | ⊢ ( ¬ 𝑍 ∈ V → ( 𝐴 ‘ 𝑍 ) = ∅ ) | |
| 6 | 5 | necon1ai | ⊢ ( ( 𝐴 ‘ 𝑍 ) ≠ ∅ → 𝑍 ∈ V ) |
| 7 | 4 6 | syl | ⊢ ( 𝑋 ( 𝐴 ‘ 𝑍 ) 𝑌 → 𝑍 ∈ V ) |
| 8 | 1 | relopabiv | ⊢ Rel ( 𝐴 ‘ 𝑍 ) |
| 9 | 8 | brrelex1i | ⊢ ( 𝑋 ( 𝐴 ‘ 𝑍 ) 𝑌 → 𝑋 ∈ V ) |
| 10 | 8 | brrelex2i | ⊢ ( 𝑋 ( 𝐴 ‘ 𝑍 ) 𝑌 → 𝑌 ∈ V ) |
| 11 | 7 9 10 | 3jca | ⊢ ( 𝑋 ( 𝐴 ‘ 𝑍 ) 𝑌 → ( 𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) |
| 12 | brne0 | ⊢ ( 𝑋 ( 𝐵 ‘ 𝑍 ) 𝑌 → ( 𝐵 ‘ 𝑍 ) ≠ ∅ ) | |
| 13 | fvprc | ⊢ ( ¬ 𝑍 ∈ V → ( 𝐵 ‘ 𝑍 ) = ∅ ) | |
| 14 | 13 | necon1ai | ⊢ ( ( 𝐵 ‘ 𝑍 ) ≠ ∅ → 𝑍 ∈ V ) |
| 15 | 12 14 | syl | ⊢ ( 𝑋 ( 𝐵 ‘ 𝑍 ) 𝑌 → 𝑍 ∈ V ) |
| 16 | 3 | brrelex1i | ⊢ ( 𝑋 ( 𝐵 ‘ 𝑍 ) 𝑌 → 𝑋 ∈ V ) |
| 17 | 3 | brrelex2i | ⊢ ( 𝑋 ( 𝐵 ‘ 𝑍 ) 𝑌 → 𝑌 ∈ V ) |
| 18 | 15 16 17 | 3jca | ⊢ ( 𝑋 ( 𝐵 ‘ 𝑍 ) 𝑌 → ( 𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝑋 ( 𝐵 ‘ 𝑍 ) 𝑌 ∧ 𝜓 ) → ( 𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) |
| 20 | 1 | a1i | ⊢ ( 𝑍 ∈ V → ( 𝐴 ‘ 𝑍 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐵 ‘ 𝑍 ) 𝑦 ∧ 𝜑 ) } ) |
| 21 | 20 2 | rbropap | ⊢ ( ( 𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑋 ( 𝐴 ‘ 𝑍 ) 𝑌 ↔ ( 𝑋 ( 𝐵 ‘ 𝑍 ) 𝑌 ∧ 𝜓 ) ) ) |
| 22 | 11 19 21 | pm5.21nii | ⊢ ( 𝑋 ( 𝐴 ‘ 𝑍 ) 𝑌 ↔ ( 𝑋 ( 𝐵 ‘ 𝑍 ) 𝑌 ∧ 𝜓 ) ) |