This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | isperf2 | ⊢ ( 𝐽 ∈ Perf ↔ ( 𝐽 ∈ Top ∧ 𝑋 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | isperf | ⊢ ( 𝐽 ∈ Perf ↔ ( 𝐽 ∈ Top ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 ) ) |
| 3 | ssid | ⊢ 𝑋 ⊆ 𝑋 | |
| 4 | 1 | lpss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ⊆ 𝑋 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ⊆ 𝑋 ) |
| 5 | 3 4 | mpan2 | ⊢ ( 𝐽 ∈ Top → ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ⊆ 𝑋 ) |
| 6 | eqss | ⊢ ( ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 ↔ ( ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ⊆ 𝑋 ∧ 𝑋 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ) ) | |
| 7 | 6 | baib | ⊢ ( ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ⊆ 𝑋 → ( ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 ↔ 𝑋 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ) ) |
| 8 | 5 7 | syl | ⊢ ( 𝐽 ∈ Top → ( ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 ↔ 𝑋 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ) ) |
| 9 | 8 | pm5.32i | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ) ) |
| 10 | 2 9 | bitri | ⊢ ( 𝐽 ∈ Perf ↔ ( 𝐽 ∈ Top ∧ 𝑋 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ) ) |