This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A perfect space is a topology which has no open singletons. (Contributed by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | |- X = U. J |
|
| Assertion | isperf3 | |- ( J e. Perf <-> ( J e. Top /\ A. x e. X -. { x } e. J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | |- X = U. J |
|
| 2 | 1 | isperf2 | |- ( J e. Perf <-> ( J e. Top /\ X C_ ( ( limPt ` J ) ` X ) ) ) |
| 3 | dfss3 | |- ( X C_ ( ( limPt ` J ) ` X ) <-> A. x e. X x e. ( ( limPt ` J ) ` X ) ) |
|
| 4 | 1 | maxlp | |- ( J e. Top -> ( x e. ( ( limPt ` J ) ` X ) <-> ( x e. X /\ -. { x } e. J ) ) ) |
| 5 | 4 | baibd | |- ( ( J e. Top /\ x e. X ) -> ( x e. ( ( limPt ` J ) ` X ) <-> -. { x } e. J ) ) |
| 6 | 5 | ralbidva | |- ( J e. Top -> ( A. x e. X x e. ( ( limPt ` J ) ` X ) <-> A. x e. X -. { x } e. J ) ) |
| 7 | 3 6 | bitrid | |- ( J e. Top -> ( X C_ ( ( limPt ` J ) ` X ) <-> A. x e. X -. { x } e. J ) ) |
| 8 | 7 | pm5.32i | |- ( ( J e. Top /\ X C_ ( ( limPt ` J ) ` X ) ) <-> ( J e. Top /\ A. x e. X -. { x } e. J ) ) |
| 9 | 2 8 | bitri | |- ( J e. Perf <-> ( J e. Top /\ A. x e. X -. { x } e. J ) ) |