This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function returning the isomorphisms of the category c . Definition 3.8 of Adamek p. 28, and definition in Lang p. 54. (Contributed by FL, 9-Jun-2014) (Revised by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-iso | ⊢ Iso = ( 𝑐 ∈ Cat ↦ ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝑐 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ciso | ⊢ Iso | |
| 1 | vc | ⊢ 𝑐 | |
| 2 | ccat | ⊢ Cat | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | cvv | ⊢ V | |
| 5 | 3 | cv | ⊢ 𝑥 |
| 6 | 5 | cdm | ⊢ dom 𝑥 |
| 7 | 3 4 6 | cmpt | ⊢ ( 𝑥 ∈ V ↦ dom 𝑥 ) |
| 8 | cinv | ⊢ Inv | |
| 9 | 1 | cv | ⊢ 𝑐 |
| 10 | 9 8 | cfv | ⊢ ( Inv ‘ 𝑐 ) |
| 11 | 7 10 | ccom | ⊢ ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝑐 ) ) |
| 12 | 1 2 11 | cmpt | ⊢ ( 𝑐 ∈ Cat ↦ ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝑐 ) ) ) |
| 13 | 0 12 | wceq | ⊢ Iso = ( 𝑐 ∈ Cat ↦ ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝑐 ) ) ) |