This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: The composition of two isomorphisms is an isomorphism. Proposition
3.14(2) of Adamek p. 29. (Contributed by Mario Carneiro, 2-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
isoco.b |
|
|
|
isoco.o |
|
|
|
isoco.n |
|
|
|
isoco.c |
|
|
|
isoco.x |
|
|
|
isoco.y |
|
|
|
isoco.z |
|
|
|
isoco.f |
|
|
|
isoco.g |
|
|
Assertion |
isoco |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isoco.b |
|
| 2 |
|
isoco.o |
|
| 3 |
|
isoco.n |
|
| 4 |
|
isoco.c |
|
| 5 |
|
isoco.x |
|
| 6 |
|
isoco.y |
|
| 7 |
|
isoco.z |
|
| 8 |
|
isoco.f |
|
| 9 |
|
isoco.g |
|
| 10 |
|
eqid |
|
| 11 |
1 10 4 5 6 3 8 2 7 9
|
invco |
|
| 12 |
1 10 4 5 7 3 11
|
inviso1 |
|