This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the predicate " <. X , D >. is a metric space" with underlying set X and distance function D . (Contributed by NM, 27-Aug-2006) (Revised by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isms.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐾 ) | |
| isms.x | ⊢ 𝑋 = ( Base ‘ 𝐾 ) | ||
| isms.d | ⊢ 𝐷 = ( ( dist ‘ 𝐾 ) ↾ ( 𝑋 × 𝑋 ) ) | ||
| Assertion | isms2 | ⊢ ( 𝐾 ∈ MetSp ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isms.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐾 ) | |
| 2 | isms.x | ⊢ 𝑋 = ( Base ‘ 𝐾 ) | |
| 3 | isms.d | ⊢ 𝐷 = ( ( dist ‘ 𝐾 ) ↾ ( 𝑋 × 𝑋 ) ) | |
| 4 | 1 2 3 | isxms2 | ⊢ ( 𝐾 ∈ ∞MetSp ↔ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ) |
| 5 | 4 | anbi1i | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ↔ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |
| 6 | 1 2 3 | isms | ⊢ ( 𝐾 ∈ MetSp ↔ ( 𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |
| 7 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 8 | 7 | pm4.71ri | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |
| 9 | 8 | anbi1i | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ↔ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ) |
| 10 | an32 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ↔ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) | |
| 11 | 9 10 | bitri | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ↔ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |
| 12 | 5 6 11 | 3bitr4i | ⊢ ( 𝐾 ∈ MetSp ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ) |