This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lpival.p | ⊢ 𝑃 = ( LPIdeal ‘ 𝑅 ) | |
| lpiss.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | ||
| Assertion | islpir | ⊢ ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ 𝑈 = 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpival.p | ⊢ 𝑃 = ( LPIdeal ‘ 𝑅 ) | |
| 2 | lpiss.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 3 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( LIdeal ‘ 𝑟 ) = ( LIdeal ‘ 𝑅 ) ) | |
| 4 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( LPIdeal ‘ 𝑟 ) = ( LPIdeal ‘ 𝑅 ) ) | |
| 5 | 3 4 | eqeq12d | ⊢ ( 𝑟 = 𝑅 → ( ( LIdeal ‘ 𝑟 ) = ( LPIdeal ‘ 𝑟 ) ↔ ( LIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) ) ) |
| 6 | 2 1 | eqeq12i | ⊢ ( 𝑈 = 𝑃 ↔ ( LIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) ) |
| 7 | 5 6 | bitr4di | ⊢ ( 𝑟 = 𝑅 → ( ( LIdeal ‘ 𝑟 ) = ( LPIdeal ‘ 𝑟 ) ↔ 𝑈 = 𝑃 ) ) |
| 8 | df-lpir | ⊢ LPIR = { 𝑟 ∈ Ring ∣ ( LIdeal ‘ 𝑟 ) = ( LPIdeal ‘ 𝑟 ) } | |
| 9 | 7 8 | elrab2 | ⊢ ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ 𝑈 = 𝑃 ) ) |