This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Principal ideals are a subclass of ideal. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lpival.p | ⊢ 𝑃 = ( LPIdeal ‘ 𝑅 ) | |
| lpiss.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | ||
| Assertion | lpiss | ⊢ ( 𝑅 ∈ Ring → 𝑃 ⊆ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpival.p | ⊢ 𝑃 = ( LPIdeal ‘ 𝑅 ) | |
| 2 | lpiss.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 5 | 1 3 4 | islpidl | ⊢ ( 𝑅 ∈ Ring → ( 𝑎 ∈ 𝑃 ↔ ∃ 𝑔 ∈ ( Base ‘ 𝑅 ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ) ) |
| 6 | snssi | ⊢ ( 𝑔 ∈ ( Base ‘ 𝑅 ) → { 𝑔 } ⊆ ( Base ‘ 𝑅 ) ) | |
| 7 | 3 4 2 | rspcl | ⊢ ( ( 𝑅 ∈ Ring ∧ { 𝑔 } ⊆ ( Base ‘ 𝑅 ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ∈ 𝑈 ) |
| 8 | 6 7 | sylan2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑔 ∈ ( Base ‘ 𝑅 ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ∈ 𝑈 ) |
| 9 | eleq1 | ⊢ ( 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) → ( 𝑎 ∈ 𝑈 ↔ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ∈ 𝑈 ) ) | |
| 10 | 8 9 | syl5ibrcom | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑔 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) → 𝑎 ∈ 𝑈 ) ) |
| 11 | 10 | rexlimdva | ⊢ ( 𝑅 ∈ Ring → ( ∃ 𝑔 ∈ ( Base ‘ 𝑅 ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) → 𝑎 ∈ 𝑈 ) ) |
| 12 | 5 11 | sylbid | ⊢ ( 𝑅 ∈ Ring → ( 𝑎 ∈ 𝑃 → 𝑎 ∈ 𝑈 ) ) |
| 13 | 12 | ssrdv | ⊢ ( 𝑅 ∈ Ring → 𝑃 ⊆ 𝑈 ) |