This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lpival.p | |- P = ( LPIdeal ` R ) |
|
| lpiss.u | |- U = ( LIdeal ` R ) |
||
| Assertion | islpir | |- ( R e. LPIR <-> ( R e. Ring /\ U = P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpival.p | |- P = ( LPIdeal ` R ) |
|
| 2 | lpiss.u | |- U = ( LIdeal ` R ) |
|
| 3 | fveq2 | |- ( r = R -> ( LIdeal ` r ) = ( LIdeal ` R ) ) |
|
| 4 | fveq2 | |- ( r = R -> ( LPIdeal ` r ) = ( LPIdeal ` R ) ) |
|
| 5 | 3 4 | eqeq12d | |- ( r = R -> ( ( LIdeal ` r ) = ( LPIdeal ` r ) <-> ( LIdeal ` R ) = ( LPIdeal ` R ) ) ) |
| 6 | 2 1 | eqeq12i | |- ( U = P <-> ( LIdeal ` R ) = ( LPIdeal ` R ) ) |
| 7 | 5 6 | bitr4di | |- ( r = R -> ( ( LIdeal ` r ) = ( LPIdeal ` r ) <-> U = P ) ) |
| 8 | df-lpir | |- LPIR = { r e. Ring | ( LIdeal ` r ) = ( LPIdeal ` r ) } |
|
| 9 | 7 8 | elrab2 | |- ( R e. LPIR <-> ( R e. Ring /\ U = P ) ) |