This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of left principal ideal rings, rings where every left ideal has a single generator. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lpir | ⊢ LPIR = { 𝑤 ∈ Ring ∣ ( LIdeal ‘ 𝑤 ) = ( LPIdeal ‘ 𝑤 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clpir | ⊢ LPIR | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | crg | ⊢ Ring | |
| 3 | clidl | ⊢ LIdeal | |
| 4 | 1 | cv | ⊢ 𝑤 |
| 5 | 4 3 | cfv | ⊢ ( LIdeal ‘ 𝑤 ) |
| 6 | clpidl | ⊢ LPIdeal | |
| 7 | 4 6 | cfv | ⊢ ( LPIdeal ‘ 𝑤 ) |
| 8 | 5 7 | wceq | ⊢ ( LIdeal ‘ 𝑤 ) = ( LPIdeal ‘ 𝑤 ) |
| 9 | 8 1 2 | crab | ⊢ { 𝑤 ∈ Ring ∣ ( LIdeal ‘ 𝑤 ) = ( LPIdeal ‘ 𝑤 ) } |
| 10 | 0 9 | wceq | ⊢ LPIR = { 𝑤 ∈ Ring ∣ ( LIdeal ‘ 𝑤 ) = ( LPIdeal ‘ 𝑤 ) } |