This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lnoval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| lnoval.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| lnoval.3 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| lnoval.4 | ⊢ 𝐻 = ( +𝑣 ‘ 𝑊 ) | ||
| lnoval.5 | ⊢ 𝑅 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| lnoval.6 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑊 ) | ||
| lnoval.7 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | ||
| Assertion | lnoval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝐿 = { 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑡 ‘ 𝑦 ) ) 𝐻 ( 𝑡 ‘ 𝑧 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnoval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | lnoval.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | lnoval.3 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 4 | lnoval.4 | ⊢ 𝐻 = ( +𝑣 ‘ 𝑊 ) | |
| 5 | lnoval.5 | ⊢ 𝑅 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 6 | lnoval.6 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑊 ) | |
| 7 | lnoval.7 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| 8 | fveq2 | ⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = ( BaseSet ‘ 𝑈 ) ) | |
| 9 | 8 1 | eqtr4di | ⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = 𝑋 ) |
| 10 | 9 | oveq2d | ⊢ ( 𝑢 = 𝑈 → ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) = ( ( BaseSet ‘ 𝑤 ) ↑m 𝑋 ) ) |
| 11 | fveq2 | ⊢ ( 𝑢 = 𝑈 → ( +𝑣 ‘ 𝑢 ) = ( +𝑣 ‘ 𝑈 ) ) | |
| 12 | 11 3 | eqtr4di | ⊢ ( 𝑢 = 𝑈 → ( +𝑣 ‘ 𝑢 ) = 𝐺 ) |
| 13 | fveq2 | ⊢ ( 𝑢 = 𝑈 → ( ·𝑠OLD ‘ 𝑢 ) = ( ·𝑠OLD ‘ 𝑈 ) ) | |
| 14 | 13 5 | eqtr4di | ⊢ ( 𝑢 = 𝑈 → ( ·𝑠OLD ‘ 𝑢 ) = 𝑅 ) |
| 15 | 14 | oveqd | ⊢ ( 𝑢 = 𝑈 → ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) = ( 𝑥 𝑅 𝑦 ) ) |
| 16 | eqidd | ⊢ ( 𝑢 = 𝑈 → 𝑧 = 𝑧 ) | |
| 17 | 12 15 16 | oveq123d | ⊢ ( 𝑢 = 𝑈 → ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) = ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) |
| 18 | 17 | fveqeq2d | ⊢ ( 𝑢 = 𝑈 → ( ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) ↔ ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) ) ) |
| 19 | 9 18 | raleqbidv | ⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) ) ) |
| 20 | 9 19 | raleqbidv | ⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) ) ) |
| 21 | 20 | ralbidv | ⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) ↔ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) ) ) |
| 22 | 10 21 | rabeqbidv | ⊢ ( 𝑢 = 𝑈 → { 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) } = { 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) } ) |
| 23 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( BaseSet ‘ 𝑤 ) = ( BaseSet ‘ 𝑊 ) ) | |
| 24 | 23 2 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( BaseSet ‘ 𝑤 ) = 𝑌 ) |
| 25 | 24 | oveq1d | ⊢ ( 𝑤 = 𝑊 → ( ( BaseSet ‘ 𝑤 ) ↑m 𝑋 ) = ( 𝑌 ↑m 𝑋 ) ) |
| 26 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( +𝑣 ‘ 𝑤 ) = ( +𝑣 ‘ 𝑊 ) ) | |
| 27 | 26 4 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( +𝑣 ‘ 𝑤 ) = 𝐻 ) |
| 28 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( ·𝑠OLD ‘ 𝑤 ) = ( ·𝑠OLD ‘ 𝑊 ) ) | |
| 29 | 28 6 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( ·𝑠OLD ‘ 𝑤 ) = 𝑆 ) |
| 30 | 29 | oveqd | ⊢ ( 𝑤 = 𝑊 → ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 𝑆 ( 𝑡 ‘ 𝑦 ) ) ) |
| 31 | eqidd | ⊢ ( 𝑤 = 𝑊 → ( 𝑡 ‘ 𝑧 ) = ( 𝑡 ‘ 𝑧 ) ) | |
| 32 | 27 30 31 | oveq123d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑡 ‘ 𝑦 ) ) 𝐻 ( 𝑡 ‘ 𝑧 ) ) ) |
| 33 | 32 | eqeq2d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) ↔ ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑡 ‘ 𝑦 ) ) 𝐻 ( 𝑡 ‘ 𝑧 ) ) ) ) |
| 34 | 33 | 2ralbidv | ⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑡 ‘ 𝑦 ) ) 𝐻 ( 𝑡 ‘ 𝑧 ) ) ) ) |
| 35 | 34 | ralbidv | ⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) ↔ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑡 ‘ 𝑦 ) ) 𝐻 ( 𝑡 ‘ 𝑧 ) ) ) ) |
| 36 | 25 35 | rabeqbidv | ⊢ ( 𝑤 = 𝑊 → { 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) } = { 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑡 ‘ 𝑦 ) ) 𝐻 ( 𝑡 ‘ 𝑧 ) ) } ) |
| 37 | df-lno | ⊢ LnOp = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) } ) | |
| 38 | ovex | ⊢ ( 𝑌 ↑m 𝑋 ) ∈ V | |
| 39 | 38 | rabex | ⊢ { 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑡 ‘ 𝑦 ) ) 𝐻 ( 𝑡 ‘ 𝑧 ) ) } ∈ V |
| 40 | 22 36 37 39 | ovmpo | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑈 LnOp 𝑊 ) = { 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑡 ‘ 𝑦 ) ) 𝐻 ( 𝑡 ‘ 𝑧 ) ) } ) |
| 41 | 7 40 | eqtrid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝐿 = { 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑡 ‘ 𝑦 ) ) 𝐻 ( 𝑡 ‘ 𝑧 ) ) } ) |