This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce a group from its properties. In this version of isgrpd2 , we don't assume there is an expression for the inverse of x . (Contributed by NM, 10-Aug-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isgrpd2.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) | |
| isgrpd2.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) | ||
| isgrpd2.z | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐺 ) ) | ||
| isgrpd2.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| isgrpd2e.n | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) | ||
| Assertion | isgrpd2e | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrpd2.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) | |
| 2 | isgrpd2.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) | |
| 3 | isgrpd2.z | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐺 ) ) | |
| 4 | isgrpd2.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 5 | isgrpd2e.n | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) | |
| 6 | 5 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) |
| 7 | 2 | oveqd | ⊢ ( 𝜑 → ( 𝑦 + 𝑥 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 8 | 7 3 | eqeq12d | ⊢ ( 𝜑 → ( ( 𝑦 + 𝑥 ) = 0 ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
| 9 | 1 8 | rexeqbidv | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ↔ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
| 10 | 1 9 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
| 11 | 6 10 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 12 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 13 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 14 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 15 | 12 13 14 | isgrp | ⊢ ( 𝐺 ∈ Grp ↔ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
| 16 | 4 11 15 | sylanbrc | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |