This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce a group from its properties. In this version of isgrpd2 , we don't assume there is an expression for the inverse of x . (Contributed by NM, 10-Aug-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isgrpd2.b | ||
| isgrpd2.p | |||
| isgrpd2.z | |||
| isgrpd2.g | |||
| isgrpd2e.n | |||
| Assertion | isgrpd2e |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrpd2.b | ||
| 2 | isgrpd2.p | ||
| 3 | isgrpd2.z | ||
| 4 | isgrpd2.g | ||
| 5 | isgrpd2e.n | ||
| 6 | 5 | ralrimiva | |
| 7 | 2 | oveqd | |
| 8 | 7 3 | eqeq12d | |
| 9 | 1 8 | rexeqbidv | |
| 10 | 1 9 | raleqbidv | |
| 11 | 6 10 | mpbid | |
| 12 | eqid | ||
| 13 | eqid | ||
| 14 | eqid | ||
| 15 | 12 13 14 | isgrp | |
| 16 | 4 11 15 | sylanbrc |