This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce a group from its properties. In this version of isgrpd2 , we don't assume there is an expression for the inverse of x . (Contributed by NM, 10-Aug-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isgrpd2.b | |- ( ph -> B = ( Base ` G ) ) |
|
| isgrpd2.p | |- ( ph -> .+ = ( +g ` G ) ) |
||
| isgrpd2.z | |- ( ph -> .0. = ( 0g ` G ) ) |
||
| isgrpd2.g | |- ( ph -> G e. Mnd ) |
||
| isgrpd2e.n | |- ( ( ph /\ x e. B ) -> E. y e. B ( y .+ x ) = .0. ) |
||
| Assertion | isgrpd2e | |- ( ph -> G e. Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrpd2.b | |- ( ph -> B = ( Base ` G ) ) |
|
| 2 | isgrpd2.p | |- ( ph -> .+ = ( +g ` G ) ) |
|
| 3 | isgrpd2.z | |- ( ph -> .0. = ( 0g ` G ) ) |
|
| 4 | isgrpd2.g | |- ( ph -> G e. Mnd ) |
|
| 5 | isgrpd2e.n | |- ( ( ph /\ x e. B ) -> E. y e. B ( y .+ x ) = .0. ) |
|
| 6 | 5 | ralrimiva | |- ( ph -> A. x e. B E. y e. B ( y .+ x ) = .0. ) |
| 7 | 2 | oveqd | |- ( ph -> ( y .+ x ) = ( y ( +g ` G ) x ) ) |
| 8 | 7 3 | eqeq12d | |- ( ph -> ( ( y .+ x ) = .0. <-> ( y ( +g ` G ) x ) = ( 0g ` G ) ) ) |
| 9 | 1 8 | rexeqbidv | |- ( ph -> ( E. y e. B ( y .+ x ) = .0. <-> E. y e. ( Base ` G ) ( y ( +g ` G ) x ) = ( 0g ` G ) ) ) |
| 10 | 1 9 | raleqbidv | |- ( ph -> ( A. x e. B E. y e. B ( y .+ x ) = .0. <-> A. x e. ( Base ` G ) E. y e. ( Base ` G ) ( y ( +g ` G ) x ) = ( 0g ` G ) ) ) |
| 11 | 6 10 | mpbid | |- ( ph -> A. x e. ( Base ` G ) E. y e. ( Base ` G ) ( y ( +g ` G ) x ) = ( 0g ` G ) ) |
| 12 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 13 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 14 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 15 | 12 13 14 | isgrp | |- ( G e. Grp <-> ( G e. Mnd /\ A. x e. ( Base ` G ) E. y e. ( Base ` G ) ( y ( +g ` G ) x ) = ( 0g ` G ) ) ) |
| 16 | 4 11 15 | sylanbrc | |- ( ph -> G e. Grp ) |