This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group isomorphism is a homomorphism whose converse is also a homomorphism. Characterization of isomorphisms similar to ishmeo . (Contributed by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isgim2 | |- ( F e. ( R GrpIso S ) <-> ( F e. ( R GrpHom S ) /\ `' F e. ( S GrpHom R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 2 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 3 | 1 2 | isgim | |- ( F e. ( R GrpIso S ) <-> ( F e. ( R GrpHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) |
| 4 | 1 2 | ghmf1o | |- ( F e. ( R GrpHom S ) -> ( F : ( Base ` R ) -1-1-onto-> ( Base ` S ) <-> `' F e. ( S GrpHom R ) ) ) |
| 5 | 4 | pm5.32i | |- ( ( F e. ( R GrpHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) <-> ( F e. ( R GrpHom S ) /\ `' F e. ( S GrpHom R ) ) ) |
| 6 | 3 5 | bitri | |- ( F e. ( R GrpIso S ) <-> ( F e. ( R GrpHom S ) /\ `' F e. ( S GrpHom R ) ) ) |