This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of an infinite series of nonnegative reals is nonnegative. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 3-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim2ser.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| iserge0.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| iserge0.3 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) | ||
| iserge0.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | ||
| iserge0.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) | ||
| Assertion | iserge0 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2ser.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | iserge0.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | iserge0.3 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) | |
| 4 | iserge0.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 5 | iserge0.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) | |
| 6 | serclim0 | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ) ⇝ 0 ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → seq 𝑀 ( + , ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ) ⇝ 0 ) |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝑍 ) | |
| 9 | 8 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 10 | c0ex | ⊢ 0 ∈ V | |
| 11 | 10 | fvconst2 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ‘ 𝑘 ) = 0 ) |
| 12 | 9 11 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ‘ 𝑘 ) = 0 ) |
| 13 | 0re | ⊢ 0 ∈ ℝ | |
| 14 | 12 13 | eqeltrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ‘ 𝑘 ) ∈ ℝ ) |
| 15 | 12 5 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 16 | 1 2 7 3 14 4 15 | iserle | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) |