This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. Inference version of iserd , which avoids the need to provide a "dummy antecedent" ph if there is no natural one to choose. (Contributed by AV, 30-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iseri.1 | ||
| iseri.2 | |||
| iseri.3 | |||
| iseri.4 | |||
| Assertion | iseri |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseri.1 | ||
| 2 | iseri.2 | ||
| 3 | iseri.3 | ||
| 4 | iseri.4 | ||
| 5 | 1 | a1i | |
| 6 | 2 | adantl | |
| 7 | 3 | adantl | |
| 8 | 4 | a1i | |
| 9 | 5 6 7 8 | iserd | |
| 10 | 9 | mptru |