This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscyg.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| iscyg.2 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| Assertion | iscyg3 | ⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscyg.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | iscyg.2 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | 1 2 | iscyg | ⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ) ) |
| 4 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) → ( 𝑛 · 𝑥 ) ∈ 𝐵 ) |
| 5 | 4 | 3expa | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑛 · 𝑥 ) ∈ 𝐵 ) |
| 6 | 5 | an32s | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑛 ∈ ℤ ) → ( 𝑛 · 𝑥 ) ∈ 𝐵 ) |
| 7 | 6 | fmpttd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) : ℤ ⟶ 𝐵 ) |
| 8 | frn | ⊢ ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) : ℤ ⟶ 𝐵 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ⊆ 𝐵 ) | |
| 9 | eqss | ⊢ ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ↔ ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ⊆ 𝐵 ∧ 𝐵 ⊆ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ) ) | |
| 10 | 9 | baib | ⊢ ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ⊆ 𝐵 → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ↔ 𝐵 ⊆ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ) ) |
| 11 | 7 8 10 | 3syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ↔ 𝐵 ⊆ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ) ) |
| 12 | dfss3 | ⊢ ( 𝐵 ⊆ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ↔ ∀ 𝑦 ∈ 𝐵 𝑦 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ) | |
| 13 | eqid | ⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) | |
| 14 | ovex | ⊢ ( 𝑛 · 𝑥 ) ∈ V | |
| 15 | 13 14 | elrnmpti | ⊢ ( 𝑦 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ↔ ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑥 ) ) |
| 16 | 15 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝑦 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑥 ) ) |
| 17 | 12 16 | bitri | ⊢ ( 𝐵 ⊆ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑥 ) ) |
| 18 | 11 17 | bitrdi | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑥 ) ) ) |
| 19 | 18 | rexbidva | ⊢ ( 𝐺 ∈ Grp → ( ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑥 ) ) ) |
| 20 | 19 | pm5.32i | ⊢ ( ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ) ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑥 ) ) ) |
| 21 | 3 20 | bitri | ⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑥 ) ) ) |