This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subcomplex vector space is a subcomplex module over a division ring. For example, the subcomplex modules over the rational or real or complex numbers are subcomplex vector spaces. (Contributed by AV, 4-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iscvs | |- ( W e. CVec <-> ( W e. CMod /\ ( Scalar ` W ) e. DivRing ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cvs | |- CVec = ( CMod i^i LVec ) |
|
| 2 | 1 | elin2 | |- ( W e. CVec <-> ( W e. CMod /\ W e. LVec ) ) |
| 3 | clmlmod | |- ( W e. CMod -> W e. LMod ) |
|
| 4 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 5 | 4 | islvec | |- ( W e. LVec <-> ( W e. LMod /\ ( Scalar ` W ) e. DivRing ) ) |
| 6 | 5 | a1i | |- ( W e. CMod -> ( W e. LVec <-> ( W e. LMod /\ ( Scalar ` W ) e. DivRing ) ) ) |
| 7 | 3 6 | mpbirand | |- ( W e. CMod -> ( W e. LVec <-> ( Scalar ` W ) e. DivRing ) ) |
| 8 | 7 | pm5.32i | |- ( ( W e. CMod /\ W e. LVec ) <-> ( W e. CMod /\ ( Scalar ` W ) e. DivRing ) ) |
| 9 | 2 8 | bitri | |- ( W e. CVec <-> ( W e. CMod /\ ( Scalar ` W ) e. DivRing ) ) |