This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscvlat2.b | |- B = ( Base ` K ) |
|
| iscvlat2.l | |- .<_ = ( le ` K ) |
||
| iscvlat2.j | |- .\/ = ( join ` K ) |
||
| iscvlat2.m | |- ./\ = ( meet ` K ) |
||
| iscvlat2.z | |- .0. = ( 0. ` K ) |
||
| iscvlat2.a | |- A = ( Atoms ` K ) |
||
| Assertion | iscvlat2N | |- ( K e. CvLat <-> ( K e. AtLat /\ A. p e. A A. q e. A A. x e. B ( ( ( p ./\ x ) = .0. /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscvlat2.b | |- B = ( Base ` K ) |
|
| 2 | iscvlat2.l | |- .<_ = ( le ` K ) |
|
| 3 | iscvlat2.j | |- .\/ = ( join ` K ) |
|
| 4 | iscvlat2.m | |- ./\ = ( meet ` K ) |
|
| 5 | iscvlat2.z | |- .0. = ( 0. ` K ) |
|
| 6 | iscvlat2.a | |- A = ( Atoms ` K ) |
|
| 7 | 1 2 3 6 | iscvlat | |- ( K e. CvLat <-> ( K e. AtLat /\ A. p e. A A. q e. A A. x e. B ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) |
| 8 | simpll | |- ( ( ( K e. AtLat /\ ( p e. A /\ q e. A ) ) /\ x e. B ) -> K e. AtLat ) |
|
| 9 | simplrl | |- ( ( ( K e. AtLat /\ ( p e. A /\ q e. A ) ) /\ x e. B ) -> p e. A ) |
|
| 10 | simpr | |- ( ( ( K e. AtLat /\ ( p e. A /\ q e. A ) ) /\ x e. B ) -> x e. B ) |
|
| 11 | 1 2 4 5 6 | atnle | |- ( ( K e. AtLat /\ p e. A /\ x e. B ) -> ( -. p .<_ x <-> ( p ./\ x ) = .0. ) ) |
| 12 | 8 9 10 11 | syl3anc | |- ( ( ( K e. AtLat /\ ( p e. A /\ q e. A ) ) /\ x e. B ) -> ( -. p .<_ x <-> ( p ./\ x ) = .0. ) ) |
| 13 | 12 | anbi1d | |- ( ( ( K e. AtLat /\ ( p e. A /\ q e. A ) ) /\ x e. B ) -> ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) <-> ( ( p ./\ x ) = .0. /\ p .<_ ( x .\/ q ) ) ) ) |
| 14 | 13 | imbi1d | |- ( ( ( K e. AtLat /\ ( p e. A /\ q e. A ) ) /\ x e. B ) -> ( ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) <-> ( ( ( p ./\ x ) = .0. /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) |
| 15 | 14 | ralbidva | |- ( ( K e. AtLat /\ ( p e. A /\ q e. A ) ) -> ( A. x e. B ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) <-> A. x e. B ( ( ( p ./\ x ) = .0. /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) |
| 16 | 15 | 2ralbidva | |- ( K e. AtLat -> ( A. p e. A A. q e. A A. x e. B ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) <-> A. p e. A A. q e. A A. x e. B ( ( ( p ./\ x ) = .0. /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) |
| 17 | 16 | pm5.32i | |- ( ( K e. AtLat /\ A. p e. A A. q e. A A. x e. B ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) <-> ( K e. AtLat /\ A. p e. A A. q e. A A. x e. B ( ( ( p ./\ x ) = .0. /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) |
| 18 | 7 17 | bitri | |- ( K e. CvLat <-> ( K e. AtLat /\ A. p e. A A. q e. A A. x e. B ( ( ( p ./\ x ) = .0. /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) |