This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all complete uniform spaces. Definition 3 of BourbakiTop1 p. II.15. (Contributed by Thierry Arnoux, 1-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cusp | ⊢ CUnifSp = { 𝑤 ∈ UnifSp ∣ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑤 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) → ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) ≠ ∅ ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccusp | ⊢ CUnifSp | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | cusp | ⊢ UnifSp | |
| 3 | vc | ⊢ 𝑐 | |
| 4 | cfil | ⊢ Fil | |
| 5 | cbs | ⊢ Base | |
| 6 | 1 | cv | ⊢ 𝑤 |
| 7 | 6 5 | cfv | ⊢ ( Base ‘ 𝑤 ) |
| 8 | 7 4 | cfv | ⊢ ( Fil ‘ ( Base ‘ 𝑤 ) ) |
| 9 | 3 | cv | ⊢ 𝑐 |
| 10 | ccfilu | ⊢ CauFilu | |
| 11 | cuss | ⊢ UnifSt | |
| 12 | 6 11 | cfv | ⊢ ( UnifSt ‘ 𝑤 ) |
| 13 | 12 10 | cfv | ⊢ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) |
| 14 | 9 13 | wcel | ⊢ 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) |
| 15 | ctopn | ⊢ TopOpen | |
| 16 | 6 15 | cfv | ⊢ ( TopOpen ‘ 𝑤 ) |
| 17 | cflim | ⊢ fLim | |
| 18 | 16 9 17 | co | ⊢ ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) |
| 19 | c0 | ⊢ ∅ | |
| 20 | 18 19 | wne | ⊢ ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) ≠ ∅ |
| 21 | 14 20 | wi | ⊢ ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) → ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) ≠ ∅ ) |
| 22 | 21 3 8 | wral | ⊢ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑤 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) → ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) ≠ ∅ ) |
| 23 | 22 1 2 | crab | ⊢ { 𝑤 ∈ UnifSp ∣ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑤 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) → ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) ≠ ∅ ) } |
| 24 | 0 23 | wceq | ⊢ CUnifSp = { 𝑤 ∈ UnifSp ∣ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑤 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) → ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) ≠ ∅ ) } |