This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " W is a complete uniform space." (Contributed by Thierry Arnoux, 3-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iscusp | |- ( W e. CUnifSp <-> ( W e. UnifSp /\ A. c e. ( Fil ` ( Base ` W ) ) ( c e. ( CauFilU ` ( UnifSt ` W ) ) -> ( ( TopOpen ` W ) fLim c ) =/= (/) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fveq3 | |- ( w = W -> ( Fil ` ( Base ` w ) ) = ( Fil ` ( Base ` W ) ) ) |
|
| 2 | 2fveq3 | |- ( w = W -> ( CauFilU ` ( UnifSt ` w ) ) = ( CauFilU ` ( UnifSt ` W ) ) ) |
|
| 3 | 2 | eleq2d | |- ( w = W -> ( c e. ( CauFilU ` ( UnifSt ` w ) ) <-> c e. ( CauFilU ` ( UnifSt ` W ) ) ) ) |
| 4 | fveq2 | |- ( w = W -> ( TopOpen ` w ) = ( TopOpen ` W ) ) |
|
| 5 | 4 | oveq1d | |- ( w = W -> ( ( TopOpen ` w ) fLim c ) = ( ( TopOpen ` W ) fLim c ) ) |
| 6 | 5 | neeq1d | |- ( w = W -> ( ( ( TopOpen ` w ) fLim c ) =/= (/) <-> ( ( TopOpen ` W ) fLim c ) =/= (/) ) ) |
| 7 | 3 6 | imbi12d | |- ( w = W -> ( ( c e. ( CauFilU ` ( UnifSt ` w ) ) -> ( ( TopOpen ` w ) fLim c ) =/= (/) ) <-> ( c e. ( CauFilU ` ( UnifSt ` W ) ) -> ( ( TopOpen ` W ) fLim c ) =/= (/) ) ) ) |
| 8 | 1 7 | raleqbidv | |- ( w = W -> ( A. c e. ( Fil ` ( Base ` w ) ) ( c e. ( CauFilU ` ( UnifSt ` w ) ) -> ( ( TopOpen ` w ) fLim c ) =/= (/) ) <-> A. c e. ( Fil ` ( Base ` W ) ) ( c e. ( CauFilU ` ( UnifSt ` W ) ) -> ( ( TopOpen ` W ) fLim c ) =/= (/) ) ) ) |
| 9 | df-cusp | |- CUnifSp = { w e. UnifSp | A. c e. ( Fil ` ( Base ` w ) ) ( c e. ( CauFilU ` ( UnifSt ` w ) ) -> ( ( TopOpen ` w ) fLim c ) =/= (/) ) } |
|
| 10 | 8 9 | elrab2 | |- ( W e. CUnifSp <-> ( W e. UnifSp /\ A. c e. ( Fil ` ( Base ` W ) ) ( c e. ( CauFilU ` ( UnifSt ` W ) ) -> ( ( TopOpen ` W ) fLim c ) =/= (/) ) ) ) |