This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "the class F is a continuous function from topology J to topology K ". Definition of continuous function in Munkres p. 102. (Contributed by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscn.1 | |- X = U. J |
|
| iscn.2 | |- Y = U. K |
||
| Assertion | iscn2 | |- ( F e. ( J Cn K ) <-> ( ( J e. Top /\ K e. Top ) /\ ( F : X --> Y /\ A. y e. K ( `' F " y ) e. J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscn.1 | |- X = U. J |
|
| 2 | iscn.2 | |- Y = U. K |
|
| 3 | df-cn | |- Cn = ( j e. Top , k e. Top |-> { f e. ( U. k ^m U. j ) | A. y e. k ( `' f " y ) e. j } ) |
|
| 4 | 3 | elmpocl | |- ( F e. ( J Cn K ) -> ( J e. Top /\ K e. Top ) ) |
| 5 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 6 | 2 | toptopon | |- ( K e. Top <-> K e. ( TopOn ` Y ) ) |
| 7 | iscn | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) -> ( F e. ( J Cn K ) <-> ( F : X --> Y /\ A. y e. K ( `' F " y ) e. J ) ) ) |
|
| 8 | 5 6 7 | syl2anb | |- ( ( J e. Top /\ K e. Top ) -> ( F e. ( J Cn K ) <-> ( F : X --> Y /\ A. y e. K ( `' F " y ) e. J ) ) ) |
| 9 | 4 8 | biadanii | |- ( F e. ( J Cn K ) <-> ( ( J e. Top /\ K e. Top ) /\ ( F : X --> Y /\ A. y e. K ( `' F " y ) e. J ) ) ) |