This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of complete metric spaces. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cms | ⊢ CMetSp = { 𝑤 ∈ MetSp ∣ [ ( Base ‘ 𝑤 ) / 𝑏 ] ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccms | ⊢ CMetSp | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | cms | ⊢ MetSp | |
| 3 | cbs | ⊢ Base | |
| 4 | 1 | cv | ⊢ 𝑤 |
| 5 | 4 3 | cfv | ⊢ ( Base ‘ 𝑤 ) |
| 6 | vb | ⊢ 𝑏 | |
| 7 | cds | ⊢ dist | |
| 8 | 4 7 | cfv | ⊢ ( dist ‘ 𝑤 ) |
| 9 | 6 | cv | ⊢ 𝑏 |
| 10 | 9 9 | cxp | ⊢ ( 𝑏 × 𝑏 ) |
| 11 | 8 10 | cres | ⊢ ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) |
| 12 | ccmet | ⊢ CMet | |
| 13 | 9 12 | cfv | ⊢ ( CMet ‘ 𝑏 ) |
| 14 | 11 13 | wcel | ⊢ ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 ) |
| 15 | 14 6 5 | wsbc | ⊢ [ ( Base ‘ 𝑤 ) / 𝑏 ] ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 ) |
| 16 | 15 1 2 | crab | ⊢ { 𝑤 ∈ MetSp ∣ [ ( Base ‘ 𝑤 ) / 𝑏 ] ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 ) } |
| 17 | 0 16 | wceq | ⊢ CMetSp = { 𝑤 ∈ MetSp ∣ [ ( Base ‘ 𝑤 ) / 𝑏 ] ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 ) } |