This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a compact topology. A topology is compact iff any open covering of its underlying set contains a finite subcovering (Heine-Borel property). Definition C''' of BourbakiTop1 p. I.59. Note: Bourbaki uses the term "quasi-compact" (saving "compact" for "compact Hausdorff"), but it is not the modern usage (which we follow). (Contributed by FL, 22-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cmp | ⊢ Comp = { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑥 ( ∪ 𝑥 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑥 = ∪ 𝑧 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccmp | ⊢ Comp | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | ctop | ⊢ Top | |
| 3 | vy | ⊢ 𝑦 | |
| 4 | 1 | cv | ⊢ 𝑥 |
| 5 | 4 | cpw | ⊢ 𝒫 𝑥 |
| 6 | 4 | cuni | ⊢ ∪ 𝑥 |
| 7 | 3 | cv | ⊢ 𝑦 |
| 8 | 7 | cuni | ⊢ ∪ 𝑦 |
| 9 | 6 8 | wceq | ⊢ ∪ 𝑥 = ∪ 𝑦 |
| 10 | vz | ⊢ 𝑧 | |
| 11 | 7 | cpw | ⊢ 𝒫 𝑦 |
| 12 | cfn | ⊢ Fin | |
| 13 | 11 12 | cin | ⊢ ( 𝒫 𝑦 ∩ Fin ) |
| 14 | 10 | cv | ⊢ 𝑧 |
| 15 | 14 | cuni | ⊢ ∪ 𝑧 |
| 16 | 6 15 | wceq | ⊢ ∪ 𝑥 = ∪ 𝑧 |
| 17 | 16 10 13 | wrex | ⊢ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑥 = ∪ 𝑧 |
| 18 | 9 17 | wi | ⊢ ( ∪ 𝑥 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑥 = ∪ 𝑧 ) |
| 19 | 18 3 5 | wral | ⊢ ∀ 𝑦 ∈ 𝒫 𝑥 ( ∪ 𝑥 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑥 = ∪ 𝑧 ) |
| 20 | 19 1 2 | crab | ⊢ { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑥 ( ∪ 𝑥 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑥 = ∪ 𝑧 ) } |
| 21 | 0 20 | wceq | ⊢ Comp = { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑥 ( ∪ 𝑥 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑥 = ∪ 𝑧 ) } |