This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subcomplex module is a left module over a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isclm.f | |- F = ( Scalar ` W ) |
|
| isclm.k | |- K = ( Base ` F ) |
||
| Assertion | isclm | |- ( W e. CMod <-> ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclm.f | |- F = ( Scalar ` W ) |
|
| 2 | isclm.k | |- K = ( Base ` F ) |
|
| 3 | fvexd | |- ( w = W -> ( Scalar ` w ) e. _V ) |
|
| 4 | fvexd | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` f ) e. _V ) |
|
| 5 | id | |- ( f = ( Scalar ` w ) -> f = ( Scalar ` w ) ) |
|
| 6 | fveq2 | |- ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) ) |
|
| 7 | 6 1 | eqtr4di | |- ( w = W -> ( Scalar ` w ) = F ) |
| 8 | 5 7 | sylan9eqr | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> f = F ) |
| 9 | 8 | adantr | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> f = F ) |
| 10 | id | |- ( k = ( Base ` f ) -> k = ( Base ` f ) ) |
|
| 11 | 8 | fveq2d | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` f ) = ( Base ` F ) ) |
| 12 | 11 2 | eqtr4di | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` f ) = K ) |
| 13 | 10 12 | sylan9eqr | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> k = K ) |
| 14 | 13 | oveq2d | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( CCfld |`s k ) = ( CCfld |`s K ) ) |
| 15 | 9 14 | eqeq12d | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( f = ( CCfld |`s k ) <-> F = ( CCfld |`s K ) ) ) |
| 16 | 13 | eleq1d | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( k e. ( SubRing ` CCfld ) <-> K e. ( SubRing ` CCfld ) ) ) |
| 17 | 15 16 | anbi12d | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( ( f = ( CCfld |`s k ) /\ k e. ( SubRing ` CCfld ) ) <-> ( F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) ) |
| 18 | 4 17 | sbcied | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ k e. ( SubRing ` CCfld ) ) <-> ( F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) ) |
| 19 | 3 18 | sbcied | |- ( w = W -> ( [. ( Scalar ` w ) / f ]. [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ k e. ( SubRing ` CCfld ) ) <-> ( F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) ) |
| 20 | df-clm | |- CMod = { w e. LMod | [. ( Scalar ` w ) / f ]. [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ k e. ( SubRing ` CCfld ) ) } |
|
| 21 | 19 20 | elrab2 | |- ( W e. CMod <-> ( W e. LMod /\ ( F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) ) |
| 22 | 3anass | |- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) <-> ( W e. LMod /\ ( F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) ) |
|
| 23 | 21 22 | bitr4i | |- ( W e. CMod <-> ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) |