This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A family is the closed sets of a topology iff it is a Moore collection and closed under finite union. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iscldtop | ⊢ ( 𝐾 ∈ ( Clsd “ ( TopOn ‘ 𝐵 ) ) ↔ ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fncld | ⊢ Clsd Fn Top | |
| 2 | fnfun | ⊢ ( Clsd Fn Top → Fun Clsd ) | |
| 3 | 1 2 | ax-mp | ⊢ Fun Clsd |
| 4 | fvelima | ⊢ ( ( Fun Clsd ∧ 𝐾 ∈ ( Clsd “ ( TopOn ‘ 𝐵 ) ) ) → ∃ 𝑎 ∈ ( TopOn ‘ 𝐵 ) ( Clsd ‘ 𝑎 ) = 𝐾 ) | |
| 5 | 3 4 | mpan | ⊢ ( 𝐾 ∈ ( Clsd “ ( TopOn ‘ 𝐵 ) ) → ∃ 𝑎 ∈ ( TopOn ‘ 𝐵 ) ( Clsd ‘ 𝑎 ) = 𝐾 ) |
| 6 | cldmreon | ⊢ ( 𝑎 ∈ ( TopOn ‘ 𝐵 ) → ( Clsd ‘ 𝑎 ) ∈ ( Moore ‘ 𝐵 ) ) | |
| 7 | topontop | ⊢ ( 𝑎 ∈ ( TopOn ‘ 𝐵 ) → 𝑎 ∈ Top ) | |
| 8 | 0cld | ⊢ ( 𝑎 ∈ Top → ∅ ∈ ( Clsd ‘ 𝑎 ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝑎 ∈ ( TopOn ‘ 𝐵 ) → ∅ ∈ ( Clsd ‘ 𝑎 ) ) |
| 10 | uncld | ⊢ ( ( 𝑥 ∈ ( Clsd ‘ 𝑎 ) ∧ 𝑦 ∈ ( Clsd ‘ 𝑎 ) ) → ( 𝑥 ∪ 𝑦 ) ∈ ( Clsd ‘ 𝑎 ) ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝑎 ∈ ( TopOn ‘ 𝐵 ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝑎 ) ∧ 𝑦 ∈ ( Clsd ‘ 𝑎 ) ) ) → ( 𝑥 ∪ 𝑦 ) ∈ ( Clsd ‘ 𝑎 ) ) |
| 12 | 11 | ralrimivva | ⊢ ( 𝑎 ∈ ( TopOn ‘ 𝐵 ) → ∀ 𝑥 ∈ ( Clsd ‘ 𝑎 ) ∀ 𝑦 ∈ ( Clsd ‘ 𝑎 ) ( 𝑥 ∪ 𝑦 ) ∈ ( Clsd ‘ 𝑎 ) ) |
| 13 | 6 9 12 | 3jca | ⊢ ( 𝑎 ∈ ( TopOn ‘ 𝐵 ) → ( ( Clsd ‘ 𝑎 ) ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ ( Clsd ‘ 𝑎 ) ∧ ∀ 𝑥 ∈ ( Clsd ‘ 𝑎 ) ∀ 𝑦 ∈ ( Clsd ‘ 𝑎 ) ( 𝑥 ∪ 𝑦 ) ∈ ( Clsd ‘ 𝑎 ) ) ) |
| 14 | eleq1 | ⊢ ( ( Clsd ‘ 𝑎 ) = 𝐾 → ( ( Clsd ‘ 𝑎 ) ∈ ( Moore ‘ 𝐵 ) ↔ 𝐾 ∈ ( Moore ‘ 𝐵 ) ) ) | |
| 15 | eleq2 | ⊢ ( ( Clsd ‘ 𝑎 ) = 𝐾 → ( ∅ ∈ ( Clsd ‘ 𝑎 ) ↔ ∅ ∈ 𝐾 ) ) | |
| 16 | eleq2 | ⊢ ( ( Clsd ‘ 𝑎 ) = 𝐾 → ( ( 𝑥 ∪ 𝑦 ) ∈ ( Clsd ‘ 𝑎 ) ↔ ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) ) | |
| 17 | 16 | raleqbi1dv | ⊢ ( ( Clsd ‘ 𝑎 ) = 𝐾 → ( ∀ 𝑦 ∈ ( Clsd ‘ 𝑎 ) ( 𝑥 ∪ 𝑦 ) ∈ ( Clsd ‘ 𝑎 ) ↔ ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) ) |
| 18 | 17 | raleqbi1dv | ⊢ ( ( Clsd ‘ 𝑎 ) = 𝐾 → ( ∀ 𝑥 ∈ ( Clsd ‘ 𝑎 ) ∀ 𝑦 ∈ ( Clsd ‘ 𝑎 ) ( 𝑥 ∪ 𝑦 ) ∈ ( Clsd ‘ 𝑎 ) ↔ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) ) |
| 19 | 14 15 18 | 3anbi123d | ⊢ ( ( Clsd ‘ 𝑎 ) = 𝐾 → ( ( ( Clsd ‘ 𝑎 ) ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ ( Clsd ‘ 𝑎 ) ∧ ∀ 𝑥 ∈ ( Clsd ‘ 𝑎 ) ∀ 𝑦 ∈ ( Clsd ‘ 𝑎 ) ( 𝑥 ∪ 𝑦 ) ∈ ( Clsd ‘ 𝑎 ) ) ↔ ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) ) ) |
| 20 | 13 19 | syl5ibcom | ⊢ ( 𝑎 ∈ ( TopOn ‘ 𝐵 ) → ( ( Clsd ‘ 𝑎 ) = 𝐾 → ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) ) ) |
| 21 | 20 | rexlimiv | ⊢ ( ∃ 𝑎 ∈ ( TopOn ‘ 𝐵 ) ( Clsd ‘ 𝑎 ) = 𝐾 → ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) ) |
| 22 | 5 21 | syl | ⊢ ( 𝐾 ∈ ( Clsd “ ( TopOn ‘ 𝐵 ) ) → ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) ) |
| 23 | simp1 | ⊢ ( ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) → 𝐾 ∈ ( Moore ‘ 𝐵 ) ) | |
| 24 | simp2 | ⊢ ( ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) → ∅ ∈ 𝐾 ) | |
| 25 | uneq1 | ⊢ ( 𝑥 = 𝑏 → ( 𝑥 ∪ 𝑦 ) = ( 𝑏 ∪ 𝑦 ) ) | |
| 26 | 25 | eleq1d | ⊢ ( 𝑥 = 𝑏 → ( ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ↔ ( 𝑏 ∪ 𝑦 ) ∈ 𝐾 ) ) |
| 27 | uneq2 | ⊢ ( 𝑦 = 𝑐 → ( 𝑏 ∪ 𝑦 ) = ( 𝑏 ∪ 𝑐 ) ) | |
| 28 | 27 | eleq1d | ⊢ ( 𝑦 = 𝑐 → ( ( 𝑏 ∪ 𝑦 ) ∈ 𝐾 ↔ ( 𝑏 ∪ 𝑐 ) ∈ 𝐾 ) ) |
| 29 | 26 28 | rspc2v | ⊢ ( ( 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝐾 ) → ( ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 → ( 𝑏 ∪ 𝑐 ) ∈ 𝐾 ) ) |
| 30 | 29 | com12 | ⊢ ( ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 → ( ( 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝐾 ) → ( 𝑏 ∪ 𝑐 ) ∈ 𝐾 ) ) |
| 31 | 30 | 3ad2ant3 | ⊢ ( ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) → ( ( 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝐾 ) → ( 𝑏 ∪ 𝑐 ) ∈ 𝐾 ) ) |
| 32 | 31 | 3impib | ⊢ ( ( ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝐾 ) → ( 𝑏 ∪ 𝑐 ) ∈ 𝐾 ) |
| 33 | eqid | ⊢ { 𝑎 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑎 ) ∈ 𝐾 } = { 𝑎 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑎 ) ∈ 𝐾 } | |
| 34 | 23 24 32 33 | mretopd | ⊢ ( ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) → ( { 𝑎 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑎 ) ∈ 𝐾 } ∈ ( TopOn ‘ 𝐵 ) ∧ 𝐾 = ( Clsd ‘ { 𝑎 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑎 ) ∈ 𝐾 } ) ) ) |
| 35 | 34 | simprd | ⊢ ( ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) → 𝐾 = ( Clsd ‘ { 𝑎 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑎 ) ∈ 𝐾 } ) ) |
| 36 | 34 | simpld | ⊢ ( ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) → { 𝑎 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑎 ) ∈ 𝐾 } ∈ ( TopOn ‘ 𝐵 ) ) |
| 37 | 7 | ssriv | ⊢ ( TopOn ‘ 𝐵 ) ⊆ Top |
| 38 | 1 | fndmi | ⊢ dom Clsd = Top |
| 39 | 37 38 | sseqtrri | ⊢ ( TopOn ‘ 𝐵 ) ⊆ dom Clsd |
| 40 | funfvima2 | ⊢ ( ( Fun Clsd ∧ ( TopOn ‘ 𝐵 ) ⊆ dom Clsd ) → ( { 𝑎 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑎 ) ∈ 𝐾 } ∈ ( TopOn ‘ 𝐵 ) → ( Clsd ‘ { 𝑎 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑎 ) ∈ 𝐾 } ) ∈ ( Clsd “ ( TopOn ‘ 𝐵 ) ) ) ) | |
| 41 | 3 39 40 | mp2an | ⊢ ( { 𝑎 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑎 ) ∈ 𝐾 } ∈ ( TopOn ‘ 𝐵 ) → ( Clsd ‘ { 𝑎 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑎 ) ∈ 𝐾 } ) ∈ ( Clsd “ ( TopOn ‘ 𝐵 ) ) ) |
| 42 | 36 41 | syl | ⊢ ( ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) → ( Clsd ‘ { 𝑎 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑎 ) ∈ 𝐾 } ) ∈ ( Clsd “ ( TopOn ‘ 𝐵 ) ) ) |
| 43 | 35 42 | eqeltrd | ⊢ ( ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) → 𝐾 ∈ ( Clsd “ ( TopOn ‘ 𝐵 ) ) ) |
| 44 | 22 43 | impbii | ⊢ ( 𝐾 ∈ ( Clsd “ ( TopOn ‘ 𝐵 ) ) ↔ ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) ) |