This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a bounded linear operator." (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bloval.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| bloval.4 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | ||
| bloval.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | ||
| Assertion | isblo2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ( 𝑁 ‘ 𝑇 ) ∈ ℝ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bloval.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 2 | bloval.4 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| 3 | bloval.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | |
| 4 | 1 2 3 | isblo | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ( 𝑁 ‘ 𝑇 ) < +∞ ) ) ) |
| 5 | eqid | ⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) | |
| 6 | eqid | ⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) | |
| 7 | 5 6 2 | lnof | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑇 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 8 | 5 6 1 | nmoreltpnf | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ) → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ( 𝑁 ‘ 𝑇 ) < +∞ ) ) |
| 9 | 7 8 | syld3an3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ( 𝑁 ‘ 𝑇 ) < +∞ ) ) |
| 10 | 9 | 3expa | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) ∧ 𝑇 ∈ 𝐿 ) → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ( 𝑁 ‘ 𝑇 ) < +∞ ) ) |
| 11 | 10 | pm5.32da | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( ( 𝑇 ∈ 𝐿 ∧ ( 𝑁 ‘ 𝑇 ) ∈ ℝ ) ↔ ( 𝑇 ∈ 𝐿 ∧ ( 𝑁 ‘ 𝑇 ) < +∞ ) ) ) |
| 12 | 4 11 | bitr4d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ( 𝑁 ‘ 𝑇 ) ∈ ℝ ) ) ) |