This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of topological bases. Equivalent to definition of basis in Munkres p. 78 (see isbasis2g ). Note that "bases" is the plural of "basis". (Contributed by NM, 17-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-bases | ⊢ TopBases = { 𝑥 ∣ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ∩ 𝑧 ) ⊆ ∪ ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctb | ⊢ TopBases | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | vy | ⊢ 𝑦 | |
| 3 | 1 | cv | ⊢ 𝑥 |
| 4 | vz | ⊢ 𝑧 | |
| 5 | 2 | cv | ⊢ 𝑦 |
| 6 | 4 | cv | ⊢ 𝑧 |
| 7 | 5 6 | cin | ⊢ ( 𝑦 ∩ 𝑧 ) |
| 8 | 7 | cpw | ⊢ 𝒫 ( 𝑦 ∩ 𝑧 ) |
| 9 | 3 8 | cin | ⊢ ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) |
| 10 | 9 | cuni | ⊢ ∪ ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) |
| 11 | 7 10 | wss | ⊢ ( 𝑦 ∩ 𝑧 ) ⊆ ∪ ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) |
| 12 | 11 4 3 | wral | ⊢ ∀ 𝑧 ∈ 𝑥 ( 𝑦 ∩ 𝑧 ) ⊆ ∪ ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) |
| 13 | 12 2 3 | wral | ⊢ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ∩ 𝑧 ) ⊆ ∪ ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) |
| 14 | 13 1 | cab | ⊢ { 𝑥 ∣ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ∩ 𝑧 ) ⊆ ∪ ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) } |
| 15 | 0 14 | wceq | ⊢ TopBases = { 𝑥 ∣ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ∩ 𝑧 ) ⊆ ∪ ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) } |