This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closure system is algebraic iff closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | acsdrscl.f | |- F = ( mrCls ` C ) |
|
| Assertion | isacs4 | |- ( C e. ( ACS ` X ) <-> ( C e. ( Moore ` X ) /\ A. s e. ~P ~P X ( ( toInc ` s ) e. Dirset -> ( F ` U. s ) = U. ( F " s ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsdrscl.f | |- F = ( mrCls ` C ) |
|
| 2 | isacs3lem | |- ( C e. ( ACS ` X ) -> ( C e. ( Moore ` X ) /\ A. t e. ~P C ( ( toInc ` t ) e. Dirset -> U. t e. C ) ) ) |
|
| 3 | 1 | isacs4lem | |- ( ( C e. ( Moore ` X ) /\ A. t e. ~P C ( ( toInc ` t ) e. Dirset -> U. t e. C ) ) -> ( C e. ( Moore ` X ) /\ A. s e. ~P ~P X ( ( toInc ` s ) e. Dirset -> ( F ` U. s ) = U. ( F " s ) ) ) ) |
| 4 | 2 3 | syl | |- ( C e. ( ACS ` X ) -> ( C e. ( Moore ` X ) /\ A. s e. ~P ~P X ( ( toInc ` s ) e. Dirset -> ( F ` U. s ) = U. ( F " s ) ) ) ) |
| 5 | 1 | isacs5lem | |- ( ( C e. ( Moore ` X ) /\ A. s e. ~P ~P X ( ( toInc ` s ) e. Dirset -> ( F ` U. s ) = U. ( F " s ) ) ) -> ( C e. ( Moore ` X ) /\ A. t e. ~P X ( F ` t ) = U. ( F " ( ~P t i^i Fin ) ) ) ) |
| 6 | 1 | isacs5 | |- ( C e. ( ACS ` X ) <-> ( C e. ( Moore ` X ) /\ A. t e. ~P X ( F ` t ) = U. ( F " ( ~P t i^i Fin ) ) ) ) |
| 7 | 5 6 | sylibr | |- ( ( C e. ( Moore ` X ) /\ A. s e. ~P ~P X ( ( toInc ` s ) e. Dirset -> ( F ` U. s ) = U. ( F " s ) ) ) -> C e. ( ACS ` X ) ) |
| 8 | 4 7 | impbii | |- ( C e. ( ACS ` X ) <-> ( C e. ( Moore ` X ) /\ A. s e. ~P ~P X ( ( toInc ` s ) e. Dirset -> ( F ` U. s ) = U. ( F " s ) ) ) ) |