This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a local and length-limited version of the axiom of choice. The definition of the predicate X e. AC_ A is that for all families of nonempty subsets of X indexed on A (i.e. functions A --> ~P X \ { (/) } ), there is a function which selects an element from each set in the family. (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-acn | ⊢ AC 𝐴 = { 𝑥 ∣ ( 𝐴 ∈ V ∧ ∀ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | 0 | wacn | ⊢ AC 𝐴 |
| 2 | vx | ⊢ 𝑥 | |
| 3 | cvv | ⊢ V | |
| 4 | 0 3 | wcel | ⊢ 𝐴 ∈ V |
| 5 | vf | ⊢ 𝑓 | |
| 6 | 2 | cv | ⊢ 𝑥 |
| 7 | 6 | cpw | ⊢ 𝒫 𝑥 |
| 8 | c0 | ⊢ ∅ | |
| 9 | 8 | csn | ⊢ { ∅ } |
| 10 | 7 9 | cdif | ⊢ ( 𝒫 𝑥 ∖ { ∅ } ) |
| 11 | cmap | ⊢ ↑m | |
| 12 | 10 0 11 | co | ⊢ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m 𝐴 ) |
| 13 | vg | ⊢ 𝑔 | |
| 14 | vy | ⊢ 𝑦 | |
| 15 | 13 | cv | ⊢ 𝑔 |
| 16 | 14 | cv | ⊢ 𝑦 |
| 17 | 16 15 | cfv | ⊢ ( 𝑔 ‘ 𝑦 ) |
| 18 | 5 | cv | ⊢ 𝑓 |
| 19 | 16 18 | cfv | ⊢ ( 𝑓 ‘ 𝑦 ) |
| 20 | 17 19 | wcel | ⊢ ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) |
| 21 | 20 14 0 | wral | ⊢ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) |
| 22 | 21 13 | wex | ⊢ ∃ 𝑔 ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) |
| 23 | 22 5 12 | wral | ⊢ ∀ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) |
| 24 | 4 23 | wa | ⊢ ( 𝐴 ∈ V ∧ ∀ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) |
| 25 | 24 2 | cab | ⊢ { 𝑥 ∣ ( 𝐴 ∈ V ∧ ∀ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) } |
| 26 | 1 25 | wceq | ⊢ AC 𝐴 = { 𝑥 ∣ ( 𝐴 ∈ V ∧ ∀ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) } |