This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pair of an empty set (of edges) and a sequence of one vertex is a walk (of length 0). (Contributed by AV, 3-Jan-2021) (Revised by AV, 23-Mar-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0wlk.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | is0wlk | ⊢ ( ( 𝑃 = { 〈 0 , 𝑁 〉 } ∧ 𝑁 ∈ 𝑉 ) → ∅ ( Walks ‘ 𝐺 ) 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0wlk.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | 1fv | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑃 = { 〈 0 , 𝑁 〉 } ) → ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) ) | |
| 3 | 2 | ancoms | ⊢ ( ( 𝑃 = { 〈 0 , 𝑁 〉 } ∧ 𝑁 ∈ 𝑉 ) → ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) ) |
| 4 | 3 | simpld | ⊢ ( ( 𝑃 = { 〈 0 , 𝑁 〉 } ∧ 𝑁 ∈ 𝑉 ) → 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) |
| 5 | 1 | 1vgrex | ⊢ ( 𝑁 ∈ 𝑉 → 𝐺 ∈ V ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑃 = { 〈 0 , 𝑁 〉 } ∧ 𝑁 ∈ 𝑉 ) → 𝐺 ∈ V ) |
| 7 | 1 | 0wlk | ⊢ ( 𝐺 ∈ V → ( ∅ ( Walks ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| 8 | 6 7 | syl | ⊢ ( ( 𝑃 = { 〈 0 , 𝑁 〉 } ∧ 𝑁 ∈ 𝑉 ) → ( ∅ ( Walks ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| 9 | 4 8 | mpbird | ⊢ ( ( 𝑃 = { 〈 0 , 𝑁 〉 } ∧ 𝑁 ∈ 𝑉 ) → ∅ ( Walks ‘ 𝐺 ) 𝑃 ) |