This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pair of an empty set (of edges) and a sequence of one vertex is a walk (of length 0). (Contributed by AV, 3-Jan-2021) (Revised by AV, 23-Mar-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0wlk.v | |- V = ( Vtx ` G ) |
|
| Assertion | is0wlk | |- ( ( P = { <. 0 , N >. } /\ N e. V ) -> (/) ( Walks ` G ) P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0wlk.v | |- V = ( Vtx ` G ) |
|
| 2 | 1fv | |- ( ( N e. V /\ P = { <. 0 , N >. } ) -> ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) ) |
|
| 3 | 2 | ancoms | |- ( ( P = { <. 0 , N >. } /\ N e. V ) -> ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) ) |
| 4 | 3 | simpld | |- ( ( P = { <. 0 , N >. } /\ N e. V ) -> P : ( 0 ... 0 ) --> V ) |
| 5 | 1 | 1vgrex | |- ( N e. V -> G e. _V ) |
| 6 | 5 | adantl | |- ( ( P = { <. 0 , N >. } /\ N e. V ) -> G e. _V ) |
| 7 | 1 | 0wlk | |- ( G e. _V -> ( (/) ( Walks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| 8 | 6 7 | syl | |- ( ( P = { <. 0 , N >. } /\ N e. V ) -> ( (/) ( Walks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| 9 | 4 8 | mpbird | |- ( ( P = { <. 0 , N >. } /\ N e. V ) -> (/) ( Walks ` G ) P ) |