This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pair of an empty set (of edges) and a second set (of vertices) is a walk iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 3-Jan-2021) (Revised by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0wlk.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | 0wlk | ⊢ ( 𝐺 ∈ 𝑈 → ( ∅ ( Walks ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0wlk.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 3 | 1 2 | iswlkg | ⊢ ( 𝐺 ∈ 𝑈 → ( ∅ ( Walks ‘ 𝐺 ) 𝑃 ↔ ( ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ) ) |
| 4 | ral0 | ⊢ ∀ 𝑘 ∈ ∅ if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) | |
| 5 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 6 | 5 | oveq2i | ⊢ ( 0 ..^ ( ♯ ‘ ∅ ) ) = ( 0 ..^ 0 ) |
| 7 | fzo0 | ⊢ ( 0 ..^ 0 ) = ∅ | |
| 8 | 6 7 | eqtri | ⊢ ( 0 ..^ ( ♯ ‘ ∅ ) ) = ∅ |
| 9 | 8 | raleqi | ⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ↔ ∀ 𝑘 ∈ ∅ if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) |
| 10 | 4 9 | mpbir | ⊢ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) |
| 11 | 10 | biantru | ⊢ ( ( ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ) ↔ ( ( ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ) |
| 12 | 5 | eqcomi | ⊢ 0 = ( ♯ ‘ ∅ ) |
| 13 | 12 | oveq2i | ⊢ ( 0 ... 0 ) = ( 0 ... ( ♯ ‘ ∅ ) ) |
| 14 | 13 | feq2i | ⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ↔ 𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ) |
| 15 | wrd0 | ⊢ ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) | |
| 16 | 15 | biantrur | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ↔ ( ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ) ) |
| 17 | 14 16 | bitri | ⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ↔ ( ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ) ) |
| 18 | df-3an | ⊢ ( ( ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ↔ ( ( ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ) | |
| 19 | 11 17 18 | 3bitr4ri | ⊢ ( ( ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) |
| 20 | 3 19 | bitrdi | ⊢ ( 𝐺 ∈ 𝑈 → ( ∅ ( Walks ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |